Loading…
A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships
Some talpid moles show one of the most specialized suites of morphological characters seen among small mammals. Fossorial and more generalized shrew‐looking moles inhabit both North America and Eurasia but these land masses share none of the same genera. One of the central questions of mole evolutio...
Saved in:
Published in: | Cladistics 2006-02, Vol.22 (1), p.59-88 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Some talpid moles show one of the most specialized suites of morphological characters seen among small mammals. Fossorial and more generalized shrew‐looking moles inhabit both North America and Eurasia but these land masses share none of the same genera. One of the central questions of mole evolution has been that of how many times specialized fossorial habits evolved. We investigated the origin of mole characters with a maximum parsimony analysis of 157 characters, mostly craniodental and postcranial, of representatives of all 17 living mole genera and three shrews and one hedgehog as outgroups. The result was one most‐parsimonious tree and its most novel aspect was the position of a Japanese shrew mole clade (Urotrichus, Dymecodon), which branched off after Uropsilus and was not closely related to the American shrew mole (Neurotrichus). The desmans (Galemys and Desmana) were the next clade in the tree, followed by Neurotrichus. We confirmed the monophyly of the Eurasian fossorial mole clade Talpini (Euroscaptor, Parascaptor, Mogera, Scaptochirus and Talpa). Condylura, the star‐nosed mole from North America, was sister group to a clade consisting of the Talpini plus Scaptonyx and the Scalopini (Scalopus, Scapanus, Parascalops, and Scapanulus). Based on our results and on the assumption that moles originated in Eurasia, it is most parsimonious to infer one migration from Eurasia to North America and two back‐migrations to Eurasia. It is ambiguous if Talpini and Scalopini evolved their full fossorial habits independently or not.
© The Willi Hennig Society 2006. |
---|---|
ISSN: | 0748-3007 1096-0031 |
DOI: | 10.1111/j.1096-0031.2006.00087.x |