Loading…
Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor
In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an...
Saved in:
Published in: | IEEE transactions on industry applications 2021-11, Vol.57 (6), p.6774-6782 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3 |
container_end_page | 6782 |
container_issue | 6 |
container_start_page | 6774 |
container_title | IEEE transactions on industry applications |
container_volume | 57 |
creator | Weinreb, Benjamin S. Noh, Minkyun Fyler, Donald C. Trumper, David L. |
description | In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation. |
doi_str_mv | 10.1109/TIA.2021.3080663 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2610085646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9432752</ieee_id><sourcerecordid>2610085646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7uzqXRAk4GUvPVY-OulchHX9GthVwdVryKSrxyzdyZj0LPjvzTLjoJ7qUE-91MtDyDMGS8bAvLpZXSw5cLYU0IFS4gFZMCNMY4TSD8kCwIjGGCNPyGkptwBMtkw-JidCdqbTgi_I97dYwiZSF3u6mrYjThhnN4cUaRqoo5_SHY50FWfMIWX6BfPkYkXotdtEnOkbdDnEzYil0K9j8Eiv05zyE_JocGPBp4d5Rr69f3dz-bG5-vxhdXlx1Xgp5dyotfE9aITeOC9AQ9cPa9_zbmBOdlwOThqjW6FbXfsKUJ2RLZdOMu2l5r04I6_3udvdesLe18-yG-02h8nlXza5YP_dxPDDbtKd7VQreWtqwPkhIKefOyyznULxOI61ZdoVyxUD6FolVUVf_ofepl2OtV6lgFWkQpWCPeVzKiXjcHyGgb2XZqs0ey_NHqTVkxd_lzge_LFUged7ICDicW2k4Lrl4jcjUppd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646463</pqid></control><display><type>article</type><title>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Weinreb, Benjamin S. ; Noh, Minkyun ; Fyler, Donald C. ; Trumper, David L.</creator><creatorcontrib>Weinreb, Benjamin S. ; Noh, Minkyun ; Fyler, Donald C. ; Trumper, David L.</creatorcontrib><description>In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2021.3080663</identifier><identifier>PMID: 34898732</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Air gaps ; Algorithms ; Bearingless motor ; Decoupling ; Design ; Dipoles ; Electrical steels ; Force ; interior permanent magnet ; Levitation ; magnetic levitation ; Magnetism ; Permanent magnet motors ; Permanent magnets ; Prototypes ; Reluctance motors ; Rotation ; Rotors ; Stator windings ; Topology ; Torque ; Winding ; Windings</subject><ispartof>IEEE transactions on industry applications, 2021-11, Vol.57 (6), p.6774-6782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</citedby><cites>FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</cites><orcidid>0000-0003-2302-9167 ; 0000-0001-5358-5450 ; 0000-0001-5876-8854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9432752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34898732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinreb, Benjamin S.</creatorcontrib><creatorcontrib>Noh, Minkyun</creatorcontrib><creatorcontrib>Fyler, Donald C.</creatorcontrib><creatorcontrib>Trumper, David L.</creatorcontrib><title>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><addtitle>IEEE Trans Ind Appl</addtitle><description>In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation.</description><subject>Air gaps</subject><subject>Algorithms</subject><subject>Bearingless motor</subject><subject>Decoupling</subject><subject>Design</subject><subject>Dipoles</subject><subject>Electrical steels</subject><subject>Force</subject><subject>interior permanent magnet</subject><subject>Levitation</subject><subject>magnetic levitation</subject><subject>Magnetism</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Prototypes</subject><subject>Reluctance motors</subject><subject>Rotation</subject><subject>Rotors</subject><subject>Stator windings</subject><subject>Topology</subject><subject>Torque</subject><subject>Winding</subject><subject>Windings</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU2LFDEQhoMo7uzqXRAk4GUvPVY-OulchHX9GthVwdVryKSrxyzdyZj0LPjvzTLjoJ7qUE-91MtDyDMGS8bAvLpZXSw5cLYU0IFS4gFZMCNMY4TSD8kCwIjGGCNPyGkptwBMtkw-JidCdqbTgi_I97dYwiZSF3u6mrYjThhnN4cUaRqoo5_SHY50FWfMIWX6BfPkYkXotdtEnOkbdDnEzYil0K9j8Eiv05zyE_JocGPBp4d5Rr69f3dz-bG5-vxhdXlx1Xgp5dyotfE9aITeOC9AQ9cPa9_zbmBOdlwOThqjW6FbXfsKUJ2RLZdOMu2l5r04I6_3udvdesLe18-yG-02h8nlXza5YP_dxPDDbtKd7VQreWtqwPkhIKefOyyznULxOI61ZdoVyxUD6FolVUVf_ofepl2OtV6lgFWkQpWCPeVzKiXjcHyGgb2XZqs0ey_NHqTVkxd_lzge_LFUged7ICDicW2k4Lrl4jcjUppd</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Weinreb, Benjamin S.</creator><creator>Noh, Minkyun</creator><creator>Fyler, Donald C.</creator><creator>Trumper, David L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2302-9167</orcidid><orcidid>https://orcid.org/0000-0001-5358-5450</orcidid><orcidid>https://orcid.org/0000-0001-5876-8854</orcidid></search><sort><creationdate>20211101</creationdate><title>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</title><author>Weinreb, Benjamin S. ; Noh, Minkyun ; Fyler, Donald C. ; Trumper, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air gaps</topic><topic>Algorithms</topic><topic>Bearingless motor</topic><topic>Decoupling</topic><topic>Design</topic><topic>Dipoles</topic><topic>Electrical steels</topic><topic>Force</topic><topic>interior permanent magnet</topic><topic>Levitation</topic><topic>magnetic levitation</topic><topic>Magnetism</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Prototypes</topic><topic>Reluctance motors</topic><topic>Rotation</topic><topic>Rotors</topic><topic>Stator windings</topic><topic>Topology</topic><topic>Torque</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinreb, Benjamin S.</creatorcontrib><creatorcontrib>Noh, Minkyun</creatorcontrib><creatorcontrib>Fyler, Donald C.</creatorcontrib><creatorcontrib>Trumper, David L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinreb, Benjamin S.</au><au>Noh, Minkyun</au><au>Fyler, Donald C.</au><au>Trumper, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><addtitle>IEEE Trans Ind Appl</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>57</volume><issue>6</issue><spage>6774</spage><epage>6782</epage><pages>6774-6782</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34898732</pmid><doi>10.1109/TIA.2021.3080663</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2302-9167</orcidid><orcidid>https://orcid.org/0000-0001-5358-5450</orcidid><orcidid>https://orcid.org/0000-0001-5876-8854</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2021-11, Vol.57 (6), p.6774-6782 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_miscellaneous_2610085646 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Air gaps Algorithms Bearingless motor Decoupling Design Dipoles Electrical steels Force interior permanent magnet Levitation magnetic levitation Magnetism Permanent magnet motors Permanent magnets Prototypes Reluctance motors Rotation Rotors Stator windings Topology Torque Winding Windings |
title | Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20a%20Novel%20Interior%20Permanent%20Magnet%20Bearingless%20Slice%20Motor&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Weinreb,%20Benjamin%20S.&rft.date=2021-11-01&rft.volume=57&rft.issue=6&rft.spage=6774&rft.epage=6782&rft.pages=6774-6782&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2021.3080663&rft_dat=%3Cproquest_pubme%3E2610085646%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601646463&rft_id=info:pmid/34898732&rft_ieee_id=9432752&rfr_iscdi=true |