Loading…

Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor

In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2021-11, Vol.57 (6), p.6774-6782
Main Authors: Weinreb, Benjamin S., Noh, Minkyun, Fyler, Donald C., Trumper, David L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3
cites cdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3
container_end_page 6782
container_issue 6
container_start_page 6774
container_title IEEE transactions on industry applications
container_volume 57
creator Weinreb, Benjamin S.
Noh, Minkyun
Fyler, Donald C.
Trumper, David L.
description In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation.
doi_str_mv 10.1109/TIA.2021.3080663
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2610085646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9432752</ieee_id><sourcerecordid>2610085646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7uzqXRAk4GUvPVY-OulchHX9GthVwdVryKSrxyzdyZj0LPjvzTLjoJ7qUE-91MtDyDMGS8bAvLpZXSw5cLYU0IFS4gFZMCNMY4TSD8kCwIjGGCNPyGkptwBMtkw-JidCdqbTgi_I97dYwiZSF3u6mrYjThhnN4cUaRqoo5_SHY50FWfMIWX6BfPkYkXotdtEnOkbdDnEzYil0K9j8Eiv05zyE_JocGPBp4d5Rr69f3dz-bG5-vxhdXlx1Xgp5dyotfE9aITeOC9AQ9cPa9_zbmBOdlwOThqjW6FbXfsKUJ2RLZdOMu2l5r04I6_3udvdesLe18-yG-02h8nlXza5YP_dxPDDbtKd7VQreWtqwPkhIKefOyyznULxOI61ZdoVyxUD6FolVUVf_ofepl2OtV6lgFWkQpWCPeVzKiXjcHyGgb2XZqs0ey_NHqTVkxd_lzge_LFUged7ICDicW2k4Lrl4jcjUppd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646463</pqid></control><display><type>article</type><title>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Weinreb, Benjamin S. ; Noh, Minkyun ; Fyler, Donald C. ; Trumper, David L.</creator><creatorcontrib>Weinreb, Benjamin S. ; Noh, Minkyun ; Fyler, Donald C. ; Trumper, David L.</creatorcontrib><description>In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2021.3080663</identifier><identifier>PMID: 34898732</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Air gaps ; Algorithms ; Bearingless motor ; Decoupling ; Design ; Dipoles ; Electrical steels ; Force ; interior permanent magnet ; Levitation ; magnetic levitation ; Magnetism ; Permanent magnet motors ; Permanent magnets ; Prototypes ; Reluctance motors ; Rotation ; Rotors ; Stator windings ; Topology ; Torque ; Winding ; Windings</subject><ispartof>IEEE transactions on industry applications, 2021-11, Vol.57 (6), p.6774-6782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</citedby><cites>FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</cites><orcidid>0000-0003-2302-9167 ; 0000-0001-5358-5450 ; 0000-0001-5876-8854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9432752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34898732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinreb, Benjamin S.</creatorcontrib><creatorcontrib>Noh, Minkyun</creatorcontrib><creatorcontrib>Fyler, Donald C.</creatorcontrib><creatorcontrib>Trumper, David L.</creatorcontrib><title>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><addtitle>IEEE Trans Ind Appl</addtitle><description>In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation.</description><subject>Air gaps</subject><subject>Algorithms</subject><subject>Bearingless motor</subject><subject>Decoupling</subject><subject>Design</subject><subject>Dipoles</subject><subject>Electrical steels</subject><subject>Force</subject><subject>interior permanent magnet</subject><subject>Levitation</subject><subject>magnetic levitation</subject><subject>Magnetism</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Prototypes</subject><subject>Reluctance motors</subject><subject>Rotation</subject><subject>Rotors</subject><subject>Stator windings</subject><subject>Topology</subject><subject>Torque</subject><subject>Winding</subject><subject>Windings</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU2LFDEQhoMo7uzqXRAk4GUvPVY-OulchHX9GthVwdVryKSrxyzdyZj0LPjvzTLjoJ7qUE-91MtDyDMGS8bAvLpZXSw5cLYU0IFS4gFZMCNMY4TSD8kCwIjGGCNPyGkptwBMtkw-JidCdqbTgi_I97dYwiZSF3u6mrYjThhnN4cUaRqoo5_SHY50FWfMIWX6BfPkYkXotdtEnOkbdDnEzYil0K9j8Eiv05zyE_JocGPBp4d5Rr69f3dz-bG5-vxhdXlx1Xgp5dyotfE9aITeOC9AQ9cPa9_zbmBOdlwOThqjW6FbXfsKUJ2RLZdOMu2l5r04I6_3udvdesLe18-yG-02h8nlXza5YP_dxPDDbtKd7VQreWtqwPkhIKefOyyznULxOI61ZdoVyxUD6FolVUVf_ofepl2OtV6lgFWkQpWCPeVzKiXjcHyGgb2XZqs0ey_NHqTVkxd_lzge_LFUged7ICDicW2k4Lrl4jcjUppd</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Weinreb, Benjamin S.</creator><creator>Noh, Minkyun</creator><creator>Fyler, Donald C.</creator><creator>Trumper, David L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2302-9167</orcidid><orcidid>https://orcid.org/0000-0001-5358-5450</orcidid><orcidid>https://orcid.org/0000-0001-5876-8854</orcidid></search><sort><creationdate>20211101</creationdate><title>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</title><author>Weinreb, Benjamin S. ; Noh, Minkyun ; Fyler, Donald C. ; Trumper, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air gaps</topic><topic>Algorithms</topic><topic>Bearingless motor</topic><topic>Decoupling</topic><topic>Design</topic><topic>Dipoles</topic><topic>Electrical steels</topic><topic>Force</topic><topic>interior permanent magnet</topic><topic>Levitation</topic><topic>magnetic levitation</topic><topic>Magnetism</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Prototypes</topic><topic>Reluctance motors</topic><topic>Rotation</topic><topic>Rotors</topic><topic>Stator windings</topic><topic>Topology</topic><topic>Torque</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinreb, Benjamin S.</creatorcontrib><creatorcontrib>Noh, Minkyun</creatorcontrib><creatorcontrib>Fyler, Donald C.</creatorcontrib><creatorcontrib>Trumper, David L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinreb, Benjamin S.</au><au>Noh, Minkyun</au><au>Fyler, Donald C.</au><au>Trumper, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><addtitle>IEEE Trans Ind Appl</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>57</volume><issue>6</issue><spage>6774</spage><epage>6782</epage><pages>6774-6782</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In this article, we present a bearingless motor with a novel segmented dipole interior permanent magnet (IPM) slice rotor. The segmented dipole IPM rotor contains a unique pattern of interior permanent magnets arranged to generate a dipole air gap flux pattern. The magnets are encapsulated within an electrical steel rotor structure. The stator contains a three-phase, four-pole winding for suspension and a three-phase, two-pole winding for rotation. We present analyses of several candidate rotor designs. The analyses indicate that the segmented dipole IPM rotor achieves a reduced tradeoff between force and torque capacity and relatively symmetric force dynamics as compared to prior art designs and alternate topologies. Symmetric and decoupled force dynamics allow a simple force decoupling algorithm to be used. We designed, constructed, and tested a prototype system. We experimentally demonstrate that the prototype system can achieve stable levitation and open-loop rotation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34898732</pmid><doi>10.1109/TIA.2021.3080663</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2302-9167</orcidid><orcidid>https://orcid.org/0000-0001-5358-5450</orcidid><orcidid>https://orcid.org/0000-0001-5876-8854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2021-11, Vol.57 (6), p.6774-6782
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_miscellaneous_2610085646
source IEEE Electronic Library (IEL) Journals
subjects Air gaps
Algorithms
Bearingless motor
Decoupling
Design
Dipoles
Electrical steels
Force
interior permanent magnet
Levitation
magnetic levitation
Magnetism
Permanent magnet motors
Permanent magnets
Prototypes
Reluctance motors
Rotation
Rotors
Stator windings
Topology
Torque
Winding
Windings
title Design and Implementation of a Novel Interior Permanent Magnet Bearingless Slice Motor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20a%20Novel%20Interior%20Permanent%20Magnet%20Bearingless%20Slice%20Motor&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Weinreb,%20Benjamin%20S.&rft.date=2021-11-01&rft.volume=57&rft.issue=6&rft.spage=6774&rft.epage=6782&rft.pages=6774-6782&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2021.3080663&rft_dat=%3Cproquest_pubme%3E2610085646%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-6b9cd07e0d9ac30708dfbcd28f1a4824fa499753757110306894524a417c472d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601646463&rft_id=info:pmid/34898732&rft_ieee_id=9432752&rfr_iscdi=true