Loading…
Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries
Binary metal sulfides CoS@SnS nanoparticles confined in N-doped carbon microsphere have been reasonably fabricated, which exhibits excellent electrochemical performance when evaluated as an anode material for half/full sodium-ion batteries. [Display omitted] The development of high-capacity anode ma...
Saved in:
Published in: | Journal of colloid and interface science 2022-03, Vol.609, p.403-413 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-ad2100e73ed3db4775363d21f749904c14d61264795c270b88bc3e639de8ffde3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-ad2100e73ed3db4775363d21f749904c14d61264795c270b88bc3e639de8ffde3 |
container_end_page | 413 |
container_issue | |
container_start_page | 403 |
container_title | Journal of colloid and interface science |
container_volume | 609 |
creator | Wan, Shuyun Cheng, Ming Chen, Hongyi Zhu, Huijuan Liu, Qiming |
description | Binary metal sulfides CoS@SnS nanoparticles confined in N-doped carbon microsphere have been reasonably fabricated, which exhibits excellent electrochemical performance when evaluated as an anode material for half/full sodium-ion batteries.
[Display omitted]
The development of high-capacity anode materials is crucial for sodium-ion batteries. Alloy-type anode materials have attracted tremendous attention due to their high theoretical capacities. Nonetheless, the realizations of high capacity and remarkable cycling stability are actually hindered by the sluggish reaction kinetics of sodium storage. Here, we report a binary metal sulfides CoS@SnS heterostructure confined in carbon microspheres (denoted as (CoSn)S/C) through a facile hydrothermal reaction combined with annealing treatment. The (CoSn)S/C with micro/nanostructure can shorten ion diffusion length and increase mechanical strength of electrode. Besides, the heterogeneous interface between CoS and SnS can improve the inherent conductivity and favor the rapid transfer of Na+. Benefitting from these advantages, (CoSn)S/C composite exhibits a high reversible capacity of 463 mAh g−1 and superior durability (368 mAh g−1 at 2 A g−1 after 1000 cycles). Notably, the assembled Na3V2(PO4)3//(CoSn)S/C full cell delivers a reversible capacity of 386 mAh g−1 at 0.2 A g−1, proving that the (CoSn)S/C is a promising anode material for sodium-ion batteries. The density functional theory (DFT) calculations unveil the mechanism and significance of the constructed CoS@SnS heterostructure for the sodium storage at atomic level. This work provides an important reference for in-depth understanding of reaction kinetics of bimetallic sulfides heterostructure. |
doi_str_mv | 10.1016/j.jcis.2021.12.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2610410698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721021500</els_id><sourcerecordid>2610410698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ad2100e73ed3db4775363d21f749904c14d61264795c270b88bc3e639de8ffde3</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCoXUr_AAfkY3tI6o8kXktc0IpCpao9FM6WYz8Trxx7sRMkfkT_M15t4chp9ObNG-nNIPSekpYSOtzs273xpWWE0ZaytsIrtKFE9o2ghL9GG1KpRgopztHbUvaEUNr38gyd806SQVK2Qc8POiaTovMRLB79DIsOwRtc1uC8hYKvdukpXj_hCRbIqSx5NcuaAfuIjc5jinj2pi4OE1RWF6zx5H9MzQGyS3nW0VQ2Jgu4jnjSwd24NQRckvXr3PhqMOqlenso79Abp0OByxe8QN9vP3_bfW3uH7_c7T7dN4b3w9JoyyghIDhYbsdOiJ4PvHJOdFKSztDODpQNnZC9YYKM2-1oOAxcWtg6Z4FfoKuT7yGnnyuURc2-GAhBR0hrUWygpKM1om2VspP0-GPJ4NQh-1nn34oSdaxB7dWxBnWsQVGmKtSjDy_-6ziD_XfyN_cq-HgSQP3yl4esivFQo7I-g1mUTf5__n8ARiybRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610410698</pqid></control><display><type>article</type><title>Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries</title><source>Elsevier</source><creator>Wan, Shuyun ; Cheng, Ming ; Chen, Hongyi ; Zhu, Huijuan ; Liu, Qiming</creator><creatorcontrib>Wan, Shuyun ; Cheng, Ming ; Chen, Hongyi ; Zhu, Huijuan ; Liu, Qiming</creatorcontrib><description>Binary metal sulfides CoS@SnS nanoparticles confined in N-doped carbon microsphere have been reasonably fabricated, which exhibits excellent electrochemical performance when evaluated as an anode material for half/full sodium-ion batteries.
[Display omitted]
The development of high-capacity anode materials is crucial for sodium-ion batteries. Alloy-type anode materials have attracted tremendous attention due to their high theoretical capacities. Nonetheless, the realizations of high capacity and remarkable cycling stability are actually hindered by the sluggish reaction kinetics of sodium storage. Here, we report a binary metal sulfides CoS@SnS heterostructure confined in carbon microspheres (denoted as (CoSn)S/C) through a facile hydrothermal reaction combined with annealing treatment. The (CoSn)S/C with micro/nanostructure can shorten ion diffusion length and increase mechanical strength of electrode. Besides, the heterogeneous interface between CoS and SnS can improve the inherent conductivity and favor the rapid transfer of Na+. Benefitting from these advantages, (CoSn)S/C composite exhibits a high reversible capacity of 463 mAh g−1 and superior durability (368 mAh g−1 at 2 A g−1 after 1000 cycles). Notably, the assembled Na3V2(PO4)3//(CoSn)S/C full cell delivers a reversible capacity of 386 mAh g−1 at 0.2 A g−1, proving that the (CoSn)S/C is a promising anode material for sodium-ion batteries. The density functional theory (DFT) calculations unveil the mechanism and significance of the constructed CoS@SnS heterostructure for the sodium storage at atomic level. This work provides an important reference for in-depth understanding of reaction kinetics of bimetallic sulfides heterostructure.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.12.021</identifier><identifier>PMID: 34906912</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bimetallic sulfides ; Density functional theory ; Heterostructure ; Micro/nanostructure ; Sodium-ion batteries</subject><ispartof>Journal of colloid and interface science, 2022-03, Vol.609, p.403-413</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-ad2100e73ed3db4775363d21f749904c14d61264795c270b88bc3e639de8ffde3</citedby><cites>FETCH-LOGICAL-c356t-ad2100e73ed3db4775363d21f749904c14d61264795c270b88bc3e639de8ffde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34906912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Shuyun</creatorcontrib><creatorcontrib>Cheng, Ming</creatorcontrib><creatorcontrib>Chen, Hongyi</creatorcontrib><creatorcontrib>Zhu, Huijuan</creatorcontrib><creatorcontrib>Liu, Qiming</creatorcontrib><title>Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Binary metal sulfides CoS@SnS nanoparticles confined in N-doped carbon microsphere have been reasonably fabricated, which exhibits excellent electrochemical performance when evaluated as an anode material for half/full sodium-ion batteries.
[Display omitted]
The development of high-capacity anode materials is crucial for sodium-ion batteries. Alloy-type anode materials have attracted tremendous attention due to their high theoretical capacities. Nonetheless, the realizations of high capacity and remarkable cycling stability are actually hindered by the sluggish reaction kinetics of sodium storage. Here, we report a binary metal sulfides CoS@SnS heterostructure confined in carbon microspheres (denoted as (CoSn)S/C) through a facile hydrothermal reaction combined with annealing treatment. The (CoSn)S/C with micro/nanostructure can shorten ion diffusion length and increase mechanical strength of electrode. Besides, the heterogeneous interface between CoS and SnS can improve the inherent conductivity and favor the rapid transfer of Na+. Benefitting from these advantages, (CoSn)S/C composite exhibits a high reversible capacity of 463 mAh g−1 and superior durability (368 mAh g−1 at 2 A g−1 after 1000 cycles). Notably, the assembled Na3V2(PO4)3//(CoSn)S/C full cell delivers a reversible capacity of 386 mAh g−1 at 0.2 A g−1, proving that the (CoSn)S/C is a promising anode material for sodium-ion batteries. The density functional theory (DFT) calculations unveil the mechanism and significance of the constructed CoS@SnS heterostructure for the sodium storage at atomic level. This work provides an important reference for in-depth understanding of reaction kinetics of bimetallic sulfides heterostructure.</description><subject>Bimetallic sulfides</subject><subject>Density functional theory</subject><subject>Heterostructure</subject><subject>Micro/nanostructure</subject><subject>Sodium-ion batteries</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAUtBCoXUr_AAfkY3tI6o8kXktc0IpCpao9FM6WYz8Trxx7sRMkfkT_M15t4chp9ObNG-nNIPSekpYSOtzs273xpWWE0ZaytsIrtKFE9o2ghL9GG1KpRgopztHbUvaEUNr38gyd806SQVK2Qc8POiaTovMRLB79DIsOwRtc1uC8hYKvdukpXj_hCRbIqSx5NcuaAfuIjc5jinj2pi4OE1RWF6zx5H9MzQGyS3nW0VQ2Jgu4jnjSwd24NQRckvXr3PhqMOqlenso79Abp0OByxe8QN9vP3_bfW3uH7_c7T7dN4b3w9JoyyghIDhYbsdOiJ4PvHJOdFKSztDODpQNnZC9YYKM2-1oOAxcWtg6Z4FfoKuT7yGnnyuURc2-GAhBR0hrUWygpKM1om2VspP0-GPJ4NQh-1nn34oSdaxB7dWxBnWsQVGmKtSjDy_-6ziD_XfyN_cq-HgSQP3yl4esivFQo7I-g1mUTf5__n8ARiybRg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Wan, Shuyun</creator><creator>Cheng, Ming</creator><creator>Chen, Hongyi</creator><creator>Zhu, Huijuan</creator><creator>Liu, Qiming</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202203</creationdate><title>Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries</title><author>Wan, Shuyun ; Cheng, Ming ; Chen, Hongyi ; Zhu, Huijuan ; Liu, Qiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ad2100e73ed3db4775363d21f749904c14d61264795c270b88bc3e639de8ffde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bimetallic sulfides</topic><topic>Density functional theory</topic><topic>Heterostructure</topic><topic>Micro/nanostructure</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Shuyun</creatorcontrib><creatorcontrib>Cheng, Ming</creatorcontrib><creatorcontrib>Chen, Hongyi</creatorcontrib><creatorcontrib>Zhu, Huijuan</creatorcontrib><creatorcontrib>Liu, Qiming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Shuyun</au><au>Cheng, Ming</au><au>Chen, Hongyi</au><au>Zhu, Huijuan</au><au>Liu, Qiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-03</date><risdate>2022</risdate><volume>609</volume><spage>403</spage><epage>413</epage><pages>403-413</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>Binary metal sulfides CoS@SnS nanoparticles confined in N-doped carbon microsphere have been reasonably fabricated, which exhibits excellent electrochemical performance when evaluated as an anode material for half/full sodium-ion batteries.
[Display omitted]
The development of high-capacity anode materials is crucial for sodium-ion batteries. Alloy-type anode materials have attracted tremendous attention due to their high theoretical capacities. Nonetheless, the realizations of high capacity and remarkable cycling stability are actually hindered by the sluggish reaction kinetics of sodium storage. Here, we report a binary metal sulfides CoS@SnS heterostructure confined in carbon microspheres (denoted as (CoSn)S/C) through a facile hydrothermal reaction combined with annealing treatment. The (CoSn)S/C with micro/nanostructure can shorten ion diffusion length and increase mechanical strength of electrode. Besides, the heterogeneous interface between CoS and SnS can improve the inherent conductivity and favor the rapid transfer of Na+. Benefitting from these advantages, (CoSn)S/C composite exhibits a high reversible capacity of 463 mAh g−1 and superior durability (368 mAh g−1 at 2 A g−1 after 1000 cycles). Notably, the assembled Na3V2(PO4)3//(CoSn)S/C full cell delivers a reversible capacity of 386 mAh g−1 at 0.2 A g−1, proving that the (CoSn)S/C is a promising anode material for sodium-ion batteries. The density functional theory (DFT) calculations unveil the mechanism and significance of the constructed CoS@SnS heterostructure for the sodium storage at atomic level. This work provides an important reference for in-depth understanding of reaction kinetics of bimetallic sulfides heterostructure.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34906912</pmid><doi>10.1016/j.jcis.2021.12.021</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2022-03, Vol.609, p.403-413 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2610410698 |
source | Elsevier |
subjects | Bimetallic sulfides Density functional theory Heterostructure Micro/nanostructure Sodium-ion batteries |
title | Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoconfined%20bimetallic%20sulfides%20(CoSn)S%20heterostructure%20in%20carbon%20microsphere%20as%20a%20high-performance%20anode%20for%20half/full%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wan,%20Shuyun&rft.date=2022-03&rft.volume=609&rft.spage=403&rft.epage=413&rft.pages=403-413&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.12.021&rft_dat=%3Cproquest_cross%3E2610410698%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-ad2100e73ed3db4775363d21f749904c14d61264795c270b88bc3e639de8ffde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610410698&rft_id=info:pmid/34906912&rfr_iscdi=true |