Loading…

Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great chall...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2022-03, Vol.28 (5), p.1935-1950
Main Authors: Wang, Gangsheng, Gao, Qun, Yang, Yunfeng, Hobbie, Sarah E, Reich, Peter B, Zhou, Jizhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme‐mediated soil inorganic N processes in the Microbial‐ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C‐N fluxes, microbial C:N ratios, and functional gene abundances from a 12‐year CO2 × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C‐N‐associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem‐level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology. Here, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme‐mediated soil inorganic N processes in the Microbial‐ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C‐N fluxes, microbial C:N ratios, and functional gene abundances from a 12‐year CO2 × N grassland experiment (BioCON) in Minnesota, USA. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially media
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.16036