Loading…

MeV gamma ray detection algorithms for stacked silicon detectors

By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for di...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 1993-08, Vol.40 (4), p.882-889
Main Authors: McMurray, R.E., Hubbard, G.S., Wercinski, P.F., Keller, R.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283
cites cdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283
container_end_page 889
container_issue 4
container_start_page 882
container_title IEEE transactions on nuclear science
container_volume 40
creator McMurray, R.E.
Hubbard, G.S.
Wercinski, P.F.
Keller, R.G.
description By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.< >
doi_str_mv 10.1109/23.256678
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26108346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>256678</ieee_id><sourcerecordid>26108346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</originalsourceid><addsrcrecordid>eNqNkbtLA0EQxhdRMEYLW7G4QgSLi_t-dErwBREbtV02e7vx9B5x51Lkv_fihbRaDcP3-75hZhA6JXhCCDbXlE2okFLpPTQiQuicCKX30QhjonPDjTlERwCffcsFFiN08xzes4Wra5clt86K0AXflW2TuWrRprL7qCGLbcqgc_4rFBmUVel7eQDbBMfoILoKwsm2jtHb_d3r9DGfvTw8TW9nuWfadLlwBYssSEUJ867wnvEYFZWF4tEzIQseaIzaGKZopEwZPRcF1XNH-y0o1WyMLofcZWq_VwE6W5fgQ1W5JrQrsFRzhhk3f4OSMIIJ_g-INeOyB68G0KcWIIVol6msXVpbgu3m6pYyO1y9Zy-2oQ68q2JyjS9hZ2BaSfm7zfmANQ6cbboElhij-rdQyTfy2SCXIYSdeTviB98nkHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26108346</pqid></control><display><type>article</type><title>MeV gamma ray detection algorithms for stacked silicon detectors</title><source>IEEE Xplore (Online service)</source><creator>McMurray, R.E. ; Hubbard, G.S. ; Wercinski, P.F. ; Keller, R.G.</creator><creatorcontrib>McMurray, R.E. ; Hubbard, G.S. ; Wercinski, P.F. ; Keller, R.G.</creatorcontrib><description>By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.&lt; &gt;</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.256678</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>Ames Research Center: IEEE</publisher><subject>Energy resolution ; Event detection ; Exact sciences and technology ; Gamma ray detection ; Gamma ray detectors ; Gamma rays ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Monte Carlo methods ; Physics ; Silicon ; Space Radiation ; Spectroscopy ; Temperature ; Testing ; X- and γ-ray instruments and techniques</subject><ispartof>IEEE transactions on nuclear science, 1993-08, Vol.40 (4), p.882-889</ispartof><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</citedby><cites>FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/256678$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3876628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McMurray, R.E.</creatorcontrib><creatorcontrib>Hubbard, G.S.</creatorcontrib><creatorcontrib>Wercinski, P.F.</creatorcontrib><creatorcontrib>Keller, R.G.</creatorcontrib><title>MeV gamma ray detection algorithms for stacked silicon detectors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.&lt; &gt;</description><subject>Energy resolution</subject><subject>Event detection</subject><subject>Exact sciences and technology</subject><subject>Gamma ray detection</subject><subject>Gamma ray detectors</subject><subject>Gamma rays</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Monte Carlo methods</subject><subject>Physics</subject><subject>Silicon</subject><subject>Space Radiation</subject><subject>Spectroscopy</subject><subject>Temperature</subject><subject>Testing</subject><subject>X- and γ-ray instruments and techniques</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNkbtLA0EQxhdRMEYLW7G4QgSLi_t-dErwBREbtV02e7vx9B5x51Lkv_fihbRaDcP3-75hZhA6JXhCCDbXlE2okFLpPTQiQuicCKX30QhjonPDjTlERwCffcsFFiN08xzes4Wra5clt86K0AXflW2TuWrRprL7qCGLbcqgc_4rFBmUVel7eQDbBMfoILoKwsm2jtHb_d3r9DGfvTw8TW9nuWfadLlwBYssSEUJ867wnvEYFZWF4tEzIQseaIzaGKZopEwZPRcF1XNH-y0o1WyMLofcZWq_VwE6W5fgQ1W5JrQrsFRzhhk3f4OSMIIJ_g-INeOyB68G0KcWIIVol6msXVpbgu3m6pYyO1y9Zy-2oQ68q2JyjS9hZ2BaSfm7zfmANQ6cbboElhij-rdQyTfy2SCXIYSdeTviB98nkHA</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>McMurray, R.E.</creator><creator>Hubbard, G.S.</creator><creator>Wercinski, P.F.</creator><creator>Keller, R.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930801</creationdate><title>MeV gamma ray detection algorithms for stacked silicon detectors</title><author>McMurray, R.E. ; Hubbard, G.S. ; Wercinski, P.F. ; Keller, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Energy resolution</topic><topic>Event detection</topic><topic>Exact sciences and technology</topic><topic>Gamma ray detection</topic><topic>Gamma ray detectors</topic><topic>Gamma rays</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Monte Carlo methods</topic><topic>Physics</topic><topic>Silicon</topic><topic>Space Radiation</topic><topic>Spectroscopy</topic><topic>Temperature</topic><topic>Testing</topic><topic>X- and γ-ray instruments and techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McMurray, R.E.</creatorcontrib><creatorcontrib>Hubbard, G.S.</creatorcontrib><creatorcontrib>Wercinski, P.F.</creatorcontrib><creatorcontrib>Keller, R.G.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McMurray, R.E.</au><au>Hubbard, G.S.</au><au>Wercinski, P.F.</au><au>Keller, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MeV gamma ray detection algorithms for stacked silicon detectors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1993-08-01</date><risdate>1993</risdate><volume>40</volume><issue>4</issue><spage>882</spage><epage>889</epage><pages>882-889</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.&lt; &gt;</abstract><cop>Ames Research Center</cop><pub>IEEE</pub><doi>10.1109/23.256678</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 1993-08, Vol.40 (4), p.882-889
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_26108346
source IEEE Xplore (Online service)
subjects Energy resolution
Event detection
Exact sciences and technology
Gamma ray detection
Gamma ray detectors
Gamma rays
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Monte Carlo methods
Physics
Silicon
Space Radiation
Spectroscopy
Temperature
Testing
X- and γ-ray instruments and techniques
title MeV gamma ray detection algorithms for stacked silicon detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MeV%20gamma%20ray%20detection%20algorithms%20for%20stacked%20silicon%20detectors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=McMurray,%20R.E.&rft.date=1993-08-01&rft.volume=40&rft.issue=4&rft.spage=882&rft.epage=889&rft.pages=882-889&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.256678&rft_dat=%3Cproquest_cross%3E26108346%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26108346&rft_id=info:pmid/&rft_ieee_id=256678&rfr_iscdi=true