Loading…
MeV gamma ray detection algorithms for stacked silicon detectors
By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for di...
Saved in:
Published in: | IEEE transactions on nuclear science 1993-08, Vol.40 (4), p.882-889 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283 |
container_end_page | 889 |
container_issue | 4 |
container_start_page | 882 |
container_title | IEEE transactions on nuclear science |
container_volume | 40 |
creator | McMurray, R.E. Hubbard, G.S. Wercinski, P.F. Keller, R.G. |
description | By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.< > |
doi_str_mv | 10.1109/23.256678 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26108346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>256678</ieee_id><sourcerecordid>26108346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</originalsourceid><addsrcrecordid>eNqNkbtLA0EQxhdRMEYLW7G4QgSLi_t-dErwBREbtV02e7vx9B5x51Lkv_fihbRaDcP3-75hZhA6JXhCCDbXlE2okFLpPTQiQuicCKX30QhjonPDjTlERwCffcsFFiN08xzes4Wra5clt86K0AXflW2TuWrRprL7qCGLbcqgc_4rFBmUVel7eQDbBMfoILoKwsm2jtHb_d3r9DGfvTw8TW9nuWfadLlwBYssSEUJ867wnvEYFZWF4tEzIQseaIzaGKZopEwZPRcF1XNH-y0o1WyMLofcZWq_VwE6W5fgQ1W5JrQrsFRzhhk3f4OSMIIJ_g-INeOyB68G0KcWIIVol6msXVpbgu3m6pYyO1y9Zy-2oQ68q2JyjS9hZ2BaSfm7zfmANQ6cbboElhij-rdQyTfy2SCXIYSdeTviB98nkHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26108346</pqid></control><display><type>article</type><title>MeV gamma ray detection algorithms for stacked silicon detectors</title><source>IEEE Xplore (Online service)</source><creator>McMurray, R.E. ; Hubbard, G.S. ; Wercinski, P.F. ; Keller, R.G.</creator><creatorcontrib>McMurray, R.E. ; Hubbard, G.S. ; Wercinski, P.F. ; Keller, R.G.</creatorcontrib><description>By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.< ></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.256678</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>Ames Research Center: IEEE</publisher><subject>Energy resolution ; Event detection ; Exact sciences and technology ; Gamma ray detection ; Gamma ray detectors ; Gamma rays ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Monte Carlo methods ; Physics ; Silicon ; Space Radiation ; Spectroscopy ; Temperature ; Testing ; X- and γ-ray instruments and techniques</subject><ispartof>IEEE transactions on nuclear science, 1993-08, Vol.40 (4), p.882-889</ispartof><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</citedby><cites>FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/256678$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3876628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McMurray, R.E.</creatorcontrib><creatorcontrib>Hubbard, G.S.</creatorcontrib><creatorcontrib>Wercinski, P.F.</creatorcontrib><creatorcontrib>Keller, R.G.</creatorcontrib><title>MeV gamma ray detection algorithms for stacked silicon detectors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.< ></description><subject>Energy resolution</subject><subject>Event detection</subject><subject>Exact sciences and technology</subject><subject>Gamma ray detection</subject><subject>Gamma ray detectors</subject><subject>Gamma rays</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Monte Carlo methods</subject><subject>Physics</subject><subject>Silicon</subject><subject>Space Radiation</subject><subject>Spectroscopy</subject><subject>Temperature</subject><subject>Testing</subject><subject>X- and γ-ray instruments and techniques</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNkbtLA0EQxhdRMEYLW7G4QgSLi_t-dErwBREbtV02e7vx9B5x51Lkv_fihbRaDcP3-75hZhA6JXhCCDbXlE2okFLpPTQiQuicCKX30QhjonPDjTlERwCffcsFFiN08xzes4Wra5clt86K0AXflW2TuWrRprL7qCGLbcqgc_4rFBmUVel7eQDbBMfoILoKwsm2jtHb_d3r9DGfvTw8TW9nuWfadLlwBYssSEUJ867wnvEYFZWF4tEzIQseaIzaGKZopEwZPRcF1XNH-y0o1WyMLofcZWq_VwE6W5fgQ1W5JrQrsFRzhhk3f4OSMIIJ_g-INeOyB68G0KcWIIVol6msXVpbgu3m6pYyO1y9Zy-2oQ68q2JyjS9hZ2BaSfm7zfmANQ6cbboElhij-rdQyTfy2SCXIYSdeTviB98nkHA</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>McMurray, R.E.</creator><creator>Hubbard, G.S.</creator><creator>Wercinski, P.F.</creator><creator>Keller, R.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930801</creationdate><title>MeV gamma ray detection algorithms for stacked silicon detectors</title><author>McMurray, R.E. ; Hubbard, G.S. ; Wercinski, P.F. ; Keller, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Energy resolution</topic><topic>Event detection</topic><topic>Exact sciences and technology</topic><topic>Gamma ray detection</topic><topic>Gamma ray detectors</topic><topic>Gamma rays</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Monte Carlo methods</topic><topic>Physics</topic><topic>Silicon</topic><topic>Space Radiation</topic><topic>Spectroscopy</topic><topic>Temperature</topic><topic>Testing</topic><topic>X- and γ-ray instruments and techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McMurray, R.E.</creatorcontrib><creatorcontrib>Hubbard, G.S.</creatorcontrib><creatorcontrib>Wercinski, P.F.</creatorcontrib><creatorcontrib>Keller, R.G.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McMurray, R.E.</au><au>Hubbard, G.S.</au><au>Wercinski, P.F.</au><au>Keller, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MeV gamma ray detection algorithms for stacked silicon detectors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1993-08-01</date><risdate>1993</risdate><volume>40</volume><issue>4</issue><spage>882</spage><epage>889</epage><pages>882-889</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>By making use of the signature of a gamma ray event as it appears in N=5 to 20 lithium-drifted silicon detectors and applying smart selection algorithms, gamma rays in the energy range of 1 to 8 MeV can be detected with good efficiency and selectivity. Examples of the types of algorithms used for different energy regions include the simple sum mode, the sum-coincidence mode used in segmented detectors, unique variations on sum-coincidence for an N-dimensional vector event, and a new and extremely useful mode for double escape peak spectroscopy at pair-production energies. The latter algorithm yields a spectrum similar to that of the pair spectrometer, but without the need of the dual external segments for double escape coincidence, and without the large loss in efficiency of double escape events. Background events due to Compton scattering are largely suppressed. Monte Carlo calculations are used to model the gamma ray interactions in the silicon, in order to permit testing of wide array of different algorithms on the event N-vectors for a large-N stack.< ></abstract><cop>Ames Research Center</cop><pub>IEEE</pub><doi>10.1109/23.256678</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 1993-08, Vol.40 (4), p.882-889 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_miscellaneous_26108346 |
source | IEEE Xplore (Online service) |
subjects | Energy resolution Event detection Exact sciences and technology Gamma ray detection Gamma ray detectors Gamma rays Instruments, apparatus, components and techniques common to several branches of physics and astronomy Monte Carlo methods Physics Silicon Space Radiation Spectroscopy Temperature Testing X- and γ-ray instruments and techniques |
title | MeV gamma ray detection algorithms for stacked silicon detectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MeV%20gamma%20ray%20detection%20algorithms%20for%20stacked%20silicon%20detectors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=McMurray,%20R.E.&rft.date=1993-08-01&rft.volume=40&rft.issue=4&rft.spage=882&rft.epage=889&rft.pages=882-889&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.256678&rft_dat=%3Cproquest_cross%3E26108346%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-5ad3f3e67213cadcc34ff726d74fc356d4e2ff899372f23798b5d28ba21552283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26108346&rft_id=info:pmid/&rft_ieee_id=256678&rfr_iscdi=true |