Loading…

Exfoliating silica bilayers via intercalation at the silica/transition metal interface

The growth of the silica (SiO ) bilayer (BL) films on transition metal (TM) surfaces creates a new class of two-dimensional (2D) crystalline, self-contained materials that interact weakly with the TM substrate. The BL-silica/TM heterojunction has shown unique physical and chemical properties that ca...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2022-01, Vol.33 (13), p.135702
Main Authors: Wang, Mengen, Boscoboinik, J Anibal, Lu, Deyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growth of the silica (SiO ) bilayer (BL) films on transition metal (TM) surfaces creates a new class of two-dimensional (2D) crystalline, self-contained materials that interact weakly with the TM substrate. The BL-silica/TM heterojunction has shown unique physical and chemical properties that can lead to new chemical reaction mechanisms under the sub-nm confinement and broad potential applications ranging from surface protection, nano transistors, molecular sieves to nuclear waste removal. Novel applications of BL-silica can be further explored as a constituent of van der Waals assembly of 2D materials. Key to these applications is an unmet technical challenge to exfoliate and transfer BL-silica films in a large area from one substrate to another without material damage. In this study, we propose a new exfoliation mechanism based on gas molecule intercalation from density functional theory studies of the BL-silica/TM heterojunction. We found that the intercalation of O atoms and CO molecules at the BL-silica/TM interface weakens the BL-silica-TM hybridization, which results in an exponential decrease of the exfoliation energy against the interface distance as the coverage of interfacial species increases. This new intercalation mechanism opens up the opportunity for non-damaging exfoliation and transfer of large area silica bilayers.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ac4351