Loading…
Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America
Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt...
Saved in:
Published in: | Journal of economic entomology 2022-02, Vol.115 (1), p.26-36 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b458t-6a62ccd984b5b9ec0dda275c23676b0ddd1293311730183314f5f0c991cb136f3 |
---|---|
cites | cdi_FETCH-LOGICAL-b458t-6a62ccd984b5b9ec0dda275c23676b0ddd1293311730183314f5f0c991cb136f3 |
container_end_page | 36 |
container_issue | 1 |
container_start_page | 26 |
container_title | Journal of economic entomology |
container_volume | 115 |
creator | Reisig, Dominic D DiFonzo, Chris Dively, Galen Farhan, Yasmine Gore, Jeff Smith, Jocelyn |
description | Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds. |
doi_str_mv | 10.1093/jee/toab247 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2611664847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A698076584</galeid><oup_id>10.1093/jee/toab247</oup_id><sourcerecordid>A698076584</sourcerecordid><originalsourceid>FETCH-LOGICAL-b458t-6a62ccd984b5b9ec0dda275c23676b0ddd1293311730183314f5f0c991cb136f3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCij2yhIRAKK1_EideTkuhlQaooAh2kePczHiU2MF2EPMYfWM8ypQFC5AX1776ztGRD0LPKDmlRPKzLcBZdKphefkALajkVcYk_f4QLQhhLCO55MfocQhbQqhglDxCxzyXjHHJF-juHELEH5RVaxjARnzjlY5GQ8DR4bfQqx2OG8CXP10_ReMsdh0-j_gzBBOishqwsXgFo2ndGMEri2-SY8DfTNy4KeIrs97gL1PQMEbTmN7E3d45Wdy6X8aGvfyj83GDlwN4o9UTdNSpPsDTwzxBX99d3l5cZatP768vlqusyYsqZkIJpnUrq7wpGgmatK1iZaEZF6Vo0qulTHJOackJrdIl74qOaCmpbigXHT9Br2bf0bsfU8pcDyal7HtlwU2hZoJSIfIqLxP64i906yZvU7pE8aooSiKLRJ3O1Fr1UBvbuZj-Mp0WBqOdhc6k_VLIipSiqPIkeDMLtHcheOjq0ZtB-V1NSb2vtk7V1odqE_38EGJqBmj_sPddJuDlDLhp_I_T6xlsjEux_sn-BiKou1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638557095</pqid></control><display><type>article</type><title>Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America</title><source>Oxford Journals Online</source><creator>Reisig, Dominic D ; DiFonzo, Chris ; Dively, Galen ; Farhan, Yasmine ; Gore, Jeff ; Smith, Jocelyn</creator><contributor>Bird, Lisa</contributor><creatorcontrib>Reisig, Dominic D ; DiFonzo, Chris ; Dively, Galen ; Farhan, Yasmine ; Gore, Jeff ; Smith, Jocelyn ; Bird, Lisa</creatorcontrib><description>Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds.</description><identifier>ISSN: 0022-0493</identifier><identifier>EISSN: 1938-291X</identifier><identifier>DOI: 10.1093/jee/toab247</identifier><identifier>PMID: 34922393</identifier><language>eng</language><publisher>US: Entomological Society of America</publisher><subject>Animals ; Bacillus ; Bacillus thuringiensis ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis Toxins ; Bacterial Proteins - genetics ; Best management practices ; Canada ; Corn ; Cotton ; Crops ; Cultivars ; Endotoxins ; FORUM ; Genetically modified crops ; Gossypium hirsutum ; Helicoverpa zea ; Hemolysin Proteins ; high dose ; Insecticide Resistance ; Lepidoptera ; Moths ; Noctuidae ; nonhigh dose ; Pest Control, Biological ; Pest resistance ; Pesticide resistance ; Pests ; Plants, Genetically Modified - genetics ; Striacosta albicosta ; Toxins ; United States ; Zea mays - genetics</subject><ispartof>Journal of economic entomology, 2022-02, Vol.115 (1), p.26-36</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. journals.permissions@oup.com</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2022 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b458t-6a62ccd984b5b9ec0dda275c23676b0ddd1293311730183314f5f0c991cb136f3</citedby><cites>FETCH-LOGICAL-b458t-6a62ccd984b5b9ec0dda275c23676b0ddd1293311730183314f5f0c991cb136f3</cites><orcidid>0000-0002-9979-5813 ; 0000-0003-1634-1451 ; 0000-0001-6747-9798 ; 0000-0002-9469-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34922393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bird, Lisa</contributor><creatorcontrib>Reisig, Dominic D</creatorcontrib><creatorcontrib>DiFonzo, Chris</creatorcontrib><creatorcontrib>Dively, Galen</creatorcontrib><creatorcontrib>Farhan, Yasmine</creatorcontrib><creatorcontrib>Gore, Jeff</creatorcontrib><creatorcontrib>Smith, Jocelyn</creatorcontrib><title>Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America</title><title>Journal of economic entomology</title><addtitle>J Econ Entomol</addtitle><description>Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds.</description><subject>Animals</subject><subject>Bacillus</subject><subject>Bacillus thuringiensis</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis Toxins</subject><subject>Bacterial Proteins - genetics</subject><subject>Best management practices</subject><subject>Canada</subject><subject>Corn</subject><subject>Cotton</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Endotoxins</subject><subject>FORUM</subject><subject>Genetically modified crops</subject><subject>Gossypium hirsutum</subject><subject>Helicoverpa zea</subject><subject>Hemolysin Proteins</subject><subject>high dose</subject><subject>Insecticide Resistance</subject><subject>Lepidoptera</subject><subject>Moths</subject><subject>Noctuidae</subject><subject>nonhigh dose</subject><subject>Pest Control, Biological</subject><subject>Pest resistance</subject><subject>Pesticide resistance</subject><subject>Pests</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Striacosta albicosta</subject><subject>Toxins</subject><subject>United States</subject><subject>Zea mays - genetics</subject><issn>0022-0493</issn><issn>1938-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYfCij2yhIRAKK1_EideTkuhlQaooAh2kePczHiU2MF2EPMYfWM8ypQFC5AX1776ztGRD0LPKDmlRPKzLcBZdKphefkALajkVcYk_f4QLQhhLCO55MfocQhbQqhglDxCxzyXjHHJF-juHELEH5RVaxjARnzjlY5GQ8DR4bfQqx2OG8CXP10_ReMsdh0-j_gzBBOishqwsXgFo2ndGMEri2-SY8DfTNy4KeIrs97gL1PQMEbTmN7E3d45Wdy6X8aGvfyj83GDlwN4o9UTdNSpPsDTwzxBX99d3l5cZatP768vlqusyYsqZkIJpnUrq7wpGgmatK1iZaEZF6Vo0qulTHJOackJrdIl74qOaCmpbigXHT9Br2bf0bsfU8pcDyal7HtlwU2hZoJSIfIqLxP64i906yZvU7pE8aooSiKLRJ3O1Fr1UBvbuZj-Mp0WBqOdhc6k_VLIipSiqPIkeDMLtHcheOjq0ZtB-V1NSb2vtk7V1odqE_38EGJqBmj_sPddJuDlDLhp_I_T6xlsjEux_sn-BiKou1Y</recordid><startdate>20220209</startdate><enddate>20220209</enddate><creator>Reisig, Dominic D</creator><creator>DiFonzo, Chris</creator><creator>Dively, Galen</creator><creator>Farhan, Yasmine</creator><creator>Gore, Jeff</creator><creator>Smith, Jocelyn</creator><general>Entomological Society of America</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9979-5813</orcidid><orcidid>https://orcid.org/0000-0003-1634-1451</orcidid><orcidid>https://orcid.org/0000-0001-6747-9798</orcidid><orcidid>https://orcid.org/0000-0002-9469-6138</orcidid></search><sort><creationdate>20220209</creationdate><title>Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America</title><author>Reisig, Dominic D ; DiFonzo, Chris ; Dively, Galen ; Farhan, Yasmine ; Gore, Jeff ; Smith, Jocelyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b458t-6a62ccd984b5b9ec0dda275c23676b0ddd1293311730183314f5f0c991cb136f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Bacillus</topic><topic>Bacillus thuringiensis</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis Toxins</topic><topic>Bacterial Proteins - genetics</topic><topic>Best management practices</topic><topic>Canada</topic><topic>Corn</topic><topic>Cotton</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Endotoxins</topic><topic>FORUM</topic><topic>Genetically modified crops</topic><topic>Gossypium hirsutum</topic><topic>Helicoverpa zea</topic><topic>Hemolysin Proteins</topic><topic>high dose</topic><topic>Insecticide Resistance</topic><topic>Lepidoptera</topic><topic>Moths</topic><topic>Noctuidae</topic><topic>nonhigh dose</topic><topic>Pest Control, Biological</topic><topic>Pest resistance</topic><topic>Pesticide resistance</topic><topic>Pests</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Striacosta albicosta</topic><topic>Toxins</topic><topic>United States</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reisig, Dominic D</creatorcontrib><creatorcontrib>DiFonzo, Chris</creatorcontrib><creatorcontrib>Dively, Galen</creatorcontrib><creatorcontrib>Farhan, Yasmine</creatorcontrib><creatorcontrib>Gore, Jeff</creatorcontrib><creatorcontrib>Smith, Jocelyn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of economic entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reisig, Dominic D</au><au>DiFonzo, Chris</au><au>Dively, Galen</au><au>Farhan, Yasmine</au><au>Gore, Jeff</au><au>Smith, Jocelyn</au><au>Bird, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America</atitle><jtitle>Journal of economic entomology</jtitle><addtitle>J Econ Entomol</addtitle><date>2022-02-09</date><risdate>2022</risdate><volume>115</volume><issue>1</issue><spage>26</spage><epage>36</epage><pages>26-36</pages><issn>0022-0493</issn><eissn>1938-291X</eissn><abstract>Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds.</abstract><cop>US</cop><pub>Entomological Society of America</pub><pmid>34922393</pmid><doi>10.1093/jee/toab247</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9979-5813</orcidid><orcidid>https://orcid.org/0000-0003-1634-1451</orcidid><orcidid>https://orcid.org/0000-0001-6747-9798</orcidid><orcidid>https://orcid.org/0000-0002-9469-6138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0493 |
ispartof | Journal of economic entomology, 2022-02, Vol.115 (1), p.26-36 |
issn | 0022-0493 1938-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_2611664847 |
source | Oxford Journals Online |
subjects | Animals Bacillus Bacillus thuringiensis Bacillus thuringiensis - genetics Bacillus thuringiensis Toxins Bacterial Proteins - genetics Best management practices Canada Corn Cotton Crops Cultivars Endotoxins FORUM Genetically modified crops Gossypium hirsutum Helicoverpa zea Hemolysin Proteins high dose Insecticide Resistance Lepidoptera Moths Noctuidae nonhigh dose Pest Control, Biological Pest resistance Pesticide resistance Pests Plants, Genetically Modified - genetics Striacosta albicosta Toxins United States Zea mays - genetics |
title | Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20Management%20Practices%20to%20Delay%20the%20Evolution%20of%20Bt%20Resistance%20in%20Lepidopteran%20Pests%20Without%20High%20Susceptibility%20to%20Bt%20Toxins%20in%20North%20America&rft.jtitle=Journal%20of%20economic%20entomology&rft.au=Reisig,%20Dominic%20D&rft.date=2022-02-09&rft.volume=115&rft.issue=1&rft.spage=26&rft.epage=36&rft.pages=26-36&rft.issn=0022-0493&rft.eissn=1938-291X&rft_id=info:doi/10.1093/jee/toab247&rft_dat=%3Cgale_proqu%3EA698076584%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b458t-6a62ccd984b5b9ec0dda275c23676b0ddd1293311730183314f5f0c991cb136f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638557095&rft_id=info:pmid/34922393&rft_galeid=A698076584&rft_oup_id=10.1093/jee/toab247&rfr_iscdi=true |