Loading…

Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate

This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chlo...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2022-04, Vol.292, p.133355-133355, Article 133355
Main Authors: Beatrice, Arwenyo, Varco, Jac J., Dygert, Andrew, Atsar, Felix S., Solomon, Sabrina, Thirumalai, Rooban Venkatesh K.G., Pittman Jr, Charles U., Mlsna, Todd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53
cites cdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53
container_end_page 133355
container_issue
container_start_page 133355
container_title Chemosphere (Oxford)
container_volume 292
creator Beatrice, Arwenyo
Varco, Jac J.
Dygert, Andrew
Atsar, Felix S.
Solomon, Sabrina
Thirumalai, Rooban Venkatesh K.G.
Pittman Jr, Charles U.
Mlsna, Todd
description This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH 
doi_str_mv 10.1016/j.chemosphere.2021.133355
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612379228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653521038297</els_id><sourcerecordid>2612379228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EoqXwCihsLCm-xHE8onKVKrHAwGTFzgl15cTBTpDK05PSghjxcjx8_7l8CF0QPCeY5FfruVlB42O3ggBziimZE8YY5wdoSgohU0JlcYimGGc8zTnjE3QS4xrjMczlMZqwTFJJRT5Fr0soq8Q2jdfW2c-yt75NbJtE2wyu7KFKOu_csP1Eb12iN8mNH95cGZPahkRbb1ZlSOPQdT5846vtXmPyFB3VpYtwtq8z9HJ3-7x4SJdP94-L62VqmBB9CpCPz-DaAACTpqhNhkGLSmOgQgswOa5FlWGKK15Lo6WuaQaYZ5wLZjiboctd3y749wFirxobDThXtuCHqGhOKBOS0mJE5Q41wccYoFZdsE0ZNopgtTWr1uqPWbU1q3Zmx-z5fsygG6h-kz8qR2CxA2A89sNCUNFYaA1UNoDpVeXtP8Z8AZlLklo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612379228</pqid></control><display><type>article</type><title>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Beatrice, Arwenyo ; Varco, Jac J. ; Dygert, Andrew ; Atsar, Felix S. ; Solomon, Sabrina ; Thirumalai, Rooban Venkatesh K.G. ; Pittman Jr, Charles U. ; Mlsna, Todd</creator><creatorcontrib>Beatrice, Arwenyo ; Varco, Jac J. ; Dygert, Andrew ; Atsar, Felix S. ; Solomon, Sabrina ; Thirumalai, Rooban Venkatesh K.G. ; Pittman Jr, Charles U. ; Mlsna, Todd</creatorcontrib><description>This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH &lt; 7 through dissolution of hydroxyapatite embedded in BP during modification, followed by precipitation of insoluble Pb10(PO4)6(OH)2. The residual lead fraction in the lead-spiked soil increased by 20.9% following amendment with BP. These results indicate that biochar-supported phosphate is a candidate to reduce lead mobility (bioavailability) in polluted soil. This amendment may lower Pb2+ uptake into plants while minimizing the potential for water contamination due to Pb2+mobility. [Display omitted] •Biochar-supported phosphate (BP) effectively immobilized Pb2+ from polluted soil.•A 1% dose of BP removed 87% of the extractable Pb2+ originally present within 10 d.•Pb2+ react with Ca10(PO4)6(OH)2 to precipitated Pb10(PO4)6·(OH)2 in soil at pH &lt; 7.•After amendment with 5% BP, the residual (immobilized) lead increased by 20.9%.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2021.133355</identifier><identifier>PMID: 34929276</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioavailability ; Biochar supported-phosphate ; Charcoal ; Heavy metals ; In-situ-immobilization ; Lead ; Phosphates ; Pseudotsuga ; Soil ; Soil Pollutants - analysis ; Soil pollution</subject><ispartof>Chemosphere (Oxford), 2022-04, Vol.292, p.133355-133355, Article 133355</ispartof><rights>2021</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</citedby><cites>FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</cites><orcidid>0000-0002-8693-399X ; 0000-0002-4027-7245 ; 0000-0002-4858-1372 ; 0000-0002-7687-4084 ; 0000-0002-1347-0066 ; 0000-0001-6484-4366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34929276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beatrice, Arwenyo</creatorcontrib><creatorcontrib>Varco, Jac J.</creatorcontrib><creatorcontrib>Dygert, Andrew</creatorcontrib><creatorcontrib>Atsar, Felix S.</creatorcontrib><creatorcontrib>Solomon, Sabrina</creatorcontrib><creatorcontrib>Thirumalai, Rooban Venkatesh K.G.</creatorcontrib><creatorcontrib>Pittman Jr, Charles U.</creatorcontrib><creatorcontrib>Mlsna, Todd</creatorcontrib><title>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH &lt; 7 through dissolution of hydroxyapatite embedded in BP during modification, followed by precipitation of insoluble Pb10(PO4)6(OH)2. The residual lead fraction in the lead-spiked soil increased by 20.9% following amendment with BP. These results indicate that biochar-supported phosphate is a candidate to reduce lead mobility (bioavailability) in polluted soil. This amendment may lower Pb2+ uptake into plants while minimizing the potential for water contamination due to Pb2+mobility. [Display omitted] •Biochar-supported phosphate (BP) effectively immobilized Pb2+ from polluted soil.•A 1% dose of BP removed 87% of the extractable Pb2+ originally present within 10 d.•Pb2+ react with Ca10(PO4)6(OH)2 to precipitated Pb10(PO4)6·(OH)2 in soil at pH &lt; 7.•After amendment with 5% BP, the residual (immobilized) lead increased by 20.9%.</description><subject>Bioavailability</subject><subject>Biochar supported-phosphate</subject><subject>Charcoal</subject><subject>Heavy metals</subject><subject>In-situ-immobilization</subject><subject>Lead</subject><subject>Phosphates</subject><subject>Pseudotsuga</subject><subject>Soil</subject><subject>Soil Pollutants - analysis</subject><subject>Soil pollution</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EoqXwCihsLCm-xHE8onKVKrHAwGTFzgl15cTBTpDK05PSghjxcjx8_7l8CF0QPCeY5FfruVlB42O3ggBziimZE8YY5wdoSgohU0JlcYimGGc8zTnjE3QS4xrjMczlMZqwTFJJRT5Fr0soq8Q2jdfW2c-yt75NbJtE2wyu7KFKOu_csP1Eb12iN8mNH95cGZPahkRbb1ZlSOPQdT5846vtXmPyFB3VpYtwtq8z9HJ3-7x4SJdP94-L62VqmBB9CpCPz-DaAACTpqhNhkGLSmOgQgswOa5FlWGKK15Lo6WuaQaYZ5wLZjiboctd3y749wFirxobDThXtuCHqGhOKBOS0mJE5Q41wccYoFZdsE0ZNopgtTWr1uqPWbU1q3Zmx-z5fsygG6h-kz8qR2CxA2A89sNCUNFYaA1UNoDpVeXtP8Z8AZlLklo</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Beatrice, Arwenyo</creator><creator>Varco, Jac J.</creator><creator>Dygert, Andrew</creator><creator>Atsar, Felix S.</creator><creator>Solomon, Sabrina</creator><creator>Thirumalai, Rooban Venkatesh K.G.</creator><creator>Pittman Jr, Charles U.</creator><creator>Mlsna, Todd</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8693-399X</orcidid><orcidid>https://orcid.org/0000-0002-4027-7245</orcidid><orcidid>https://orcid.org/0000-0002-4858-1372</orcidid><orcidid>https://orcid.org/0000-0002-7687-4084</orcidid><orcidid>https://orcid.org/0000-0002-1347-0066</orcidid><orcidid>https://orcid.org/0000-0001-6484-4366</orcidid></search><sort><creationdate>202204</creationdate><title>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</title><author>Beatrice, Arwenyo ; Varco, Jac J. ; Dygert, Andrew ; Atsar, Felix S. ; Solomon, Sabrina ; Thirumalai, Rooban Venkatesh K.G. ; Pittman Jr, Charles U. ; Mlsna, Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioavailability</topic><topic>Biochar supported-phosphate</topic><topic>Charcoal</topic><topic>Heavy metals</topic><topic>In-situ-immobilization</topic><topic>Lead</topic><topic>Phosphates</topic><topic>Pseudotsuga</topic><topic>Soil</topic><topic>Soil Pollutants - analysis</topic><topic>Soil pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beatrice, Arwenyo</creatorcontrib><creatorcontrib>Varco, Jac J.</creatorcontrib><creatorcontrib>Dygert, Andrew</creatorcontrib><creatorcontrib>Atsar, Felix S.</creatorcontrib><creatorcontrib>Solomon, Sabrina</creatorcontrib><creatorcontrib>Thirumalai, Rooban Venkatesh K.G.</creatorcontrib><creatorcontrib>Pittman Jr, Charles U.</creatorcontrib><creatorcontrib>Mlsna, Todd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beatrice, Arwenyo</au><au>Varco, Jac J.</au><au>Dygert, Andrew</au><au>Atsar, Felix S.</au><au>Solomon, Sabrina</au><au>Thirumalai, Rooban Venkatesh K.G.</au><au>Pittman Jr, Charles U.</au><au>Mlsna, Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-04</date><risdate>2022</risdate><volume>292</volume><spage>133355</spage><epage>133355</epage><pages>133355-133355</pages><artnum>133355</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH &lt; 7 through dissolution of hydroxyapatite embedded in BP during modification, followed by precipitation of insoluble Pb10(PO4)6(OH)2. The residual lead fraction in the lead-spiked soil increased by 20.9% following amendment with BP. These results indicate that biochar-supported phosphate is a candidate to reduce lead mobility (bioavailability) in polluted soil. This amendment may lower Pb2+ uptake into plants while minimizing the potential for water contamination due to Pb2+mobility. [Display omitted] •Biochar-supported phosphate (BP) effectively immobilized Pb2+ from polluted soil.•A 1% dose of BP removed 87% of the extractable Pb2+ originally present within 10 d.•Pb2+ react with Ca10(PO4)6(OH)2 to precipitated Pb10(PO4)6·(OH)2 in soil at pH &lt; 7.•After amendment with 5% BP, the residual (immobilized) lead increased by 20.9%.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34929276</pmid><doi>10.1016/j.chemosphere.2021.133355</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8693-399X</orcidid><orcidid>https://orcid.org/0000-0002-4027-7245</orcidid><orcidid>https://orcid.org/0000-0002-4858-1372</orcidid><orcidid>https://orcid.org/0000-0002-7687-4084</orcidid><orcidid>https://orcid.org/0000-0002-1347-0066</orcidid><orcidid>https://orcid.org/0000-0001-6484-4366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2022-04, Vol.292, p.133355-133355, Article 133355
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2612379228
source ScienceDirect Freedom Collection 2022-2024
subjects Bioavailability
Biochar supported-phosphate
Charcoal
Heavy metals
In-situ-immobilization
Lead
Phosphates
Pseudotsuga
Soil
Soil Pollutants - analysis
Soil pollution
title Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead%20immobilization%20in%20simulated%20polluted%20soil%20by%20Douglas%20fir%20biochar-supported%20phosphate&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Beatrice,%20Arwenyo&rft.date=2022-04&rft.volume=292&rft.spage=133355&rft.epage=133355&rft.pages=133355-133355&rft.artnum=133355&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2021.133355&rft_dat=%3Cproquest_cross%3E2612379228%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612379228&rft_id=info:pmid/34929276&rfr_iscdi=true