Loading…
Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate
This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chlo...
Saved in:
Published in: | Chemosphere (Oxford) 2022-04, Vol.292, p.133355-133355, Article 133355 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53 |
container_end_page | 133355 |
container_issue | |
container_start_page | 133355 |
container_title | Chemosphere (Oxford) |
container_volume | 292 |
creator | Beatrice, Arwenyo Varco, Jac J. Dygert, Andrew Atsar, Felix S. Solomon, Sabrina Thirumalai, Rooban Venkatesh K.G. Pittman Jr, Charles U. Mlsna, Todd |
description | This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH |
doi_str_mv | 10.1016/j.chemosphere.2021.133355 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612379228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653521038297</els_id><sourcerecordid>2612379228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EoqXwCihsLCm-xHE8onKVKrHAwGTFzgl15cTBTpDK05PSghjxcjx8_7l8CF0QPCeY5FfruVlB42O3ggBziimZE8YY5wdoSgohU0JlcYimGGc8zTnjE3QS4xrjMczlMZqwTFJJRT5Fr0soq8Q2jdfW2c-yt75NbJtE2wyu7KFKOu_csP1Eb12iN8mNH95cGZPahkRbb1ZlSOPQdT5846vtXmPyFB3VpYtwtq8z9HJ3-7x4SJdP94-L62VqmBB9CpCPz-DaAACTpqhNhkGLSmOgQgswOa5FlWGKK15Lo6WuaQaYZ5wLZjiboctd3y749wFirxobDThXtuCHqGhOKBOS0mJE5Q41wccYoFZdsE0ZNopgtTWr1uqPWbU1q3Zmx-z5fsygG6h-kz8qR2CxA2A89sNCUNFYaA1UNoDpVeXtP8Z8AZlLklo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612379228</pqid></control><display><type>article</type><title>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Beatrice, Arwenyo ; Varco, Jac J. ; Dygert, Andrew ; Atsar, Felix S. ; Solomon, Sabrina ; Thirumalai, Rooban Venkatesh K.G. ; Pittman Jr, Charles U. ; Mlsna, Todd</creator><creatorcontrib>Beatrice, Arwenyo ; Varco, Jac J. ; Dygert, Andrew ; Atsar, Felix S. ; Solomon, Sabrina ; Thirumalai, Rooban Venkatesh K.G. ; Pittman Jr, Charles U. ; Mlsna, Todd</creatorcontrib><description>This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH < 7 through dissolution of hydroxyapatite embedded in BP during modification, followed by precipitation of insoluble Pb10(PO4)6(OH)2. The residual lead fraction in the lead-spiked soil increased by 20.9% following amendment with BP. These results indicate that biochar-supported phosphate is a candidate to reduce lead mobility (bioavailability) in polluted soil. This amendment may lower Pb2+ uptake into plants while minimizing the potential for water contamination due to Pb2+mobility.
[Display omitted]
•Biochar-supported phosphate (BP) effectively immobilized Pb2+ from polluted soil.•A 1% dose of BP removed 87% of the extractable Pb2+ originally present within 10 d.•Pb2+ react with Ca10(PO4)6(OH)2 to precipitated Pb10(PO4)6·(OH)2 in soil at pH < 7.•After amendment with 5% BP, the residual (immobilized) lead increased by 20.9%.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2021.133355</identifier><identifier>PMID: 34929276</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioavailability ; Biochar supported-phosphate ; Charcoal ; Heavy metals ; In-situ-immobilization ; Lead ; Phosphates ; Pseudotsuga ; Soil ; Soil Pollutants - analysis ; Soil pollution</subject><ispartof>Chemosphere (Oxford), 2022-04, Vol.292, p.133355-133355, Article 133355</ispartof><rights>2021</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</citedby><cites>FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</cites><orcidid>0000-0002-8693-399X ; 0000-0002-4027-7245 ; 0000-0002-4858-1372 ; 0000-0002-7687-4084 ; 0000-0002-1347-0066 ; 0000-0001-6484-4366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34929276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beatrice, Arwenyo</creatorcontrib><creatorcontrib>Varco, Jac J.</creatorcontrib><creatorcontrib>Dygert, Andrew</creatorcontrib><creatorcontrib>Atsar, Felix S.</creatorcontrib><creatorcontrib>Solomon, Sabrina</creatorcontrib><creatorcontrib>Thirumalai, Rooban Venkatesh K.G.</creatorcontrib><creatorcontrib>Pittman Jr, Charles U.</creatorcontrib><creatorcontrib>Mlsna, Todd</creatorcontrib><title>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH < 7 through dissolution of hydroxyapatite embedded in BP during modification, followed by precipitation of insoluble Pb10(PO4)6(OH)2. The residual lead fraction in the lead-spiked soil increased by 20.9% following amendment with BP. These results indicate that biochar-supported phosphate is a candidate to reduce lead mobility (bioavailability) in polluted soil. This amendment may lower Pb2+ uptake into plants while minimizing the potential for water contamination due to Pb2+mobility.
[Display omitted]
•Biochar-supported phosphate (BP) effectively immobilized Pb2+ from polluted soil.•A 1% dose of BP removed 87% of the extractable Pb2+ originally present within 10 d.•Pb2+ react with Ca10(PO4)6(OH)2 to precipitated Pb10(PO4)6·(OH)2 in soil at pH < 7.•After amendment with 5% BP, the residual (immobilized) lead increased by 20.9%.</description><subject>Bioavailability</subject><subject>Biochar supported-phosphate</subject><subject>Charcoal</subject><subject>Heavy metals</subject><subject>In-situ-immobilization</subject><subject>Lead</subject><subject>Phosphates</subject><subject>Pseudotsuga</subject><subject>Soil</subject><subject>Soil Pollutants - analysis</subject><subject>Soil pollution</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EoqXwCihsLCm-xHE8onKVKrHAwGTFzgl15cTBTpDK05PSghjxcjx8_7l8CF0QPCeY5FfruVlB42O3ggBziimZE8YY5wdoSgohU0JlcYimGGc8zTnjE3QS4xrjMczlMZqwTFJJRT5Fr0soq8Q2jdfW2c-yt75NbJtE2wyu7KFKOu_csP1Eb12iN8mNH95cGZPahkRbb1ZlSOPQdT5846vtXmPyFB3VpYtwtq8z9HJ3-7x4SJdP94-L62VqmBB9CpCPz-DaAACTpqhNhkGLSmOgQgswOa5FlWGKK15Lo6WuaQaYZ5wLZjiboctd3y749wFirxobDThXtuCHqGhOKBOS0mJE5Q41wccYoFZdsE0ZNopgtTWr1uqPWbU1q3Zmx-z5fsygG6h-kz8qR2CxA2A89sNCUNFYaA1UNoDpVeXtP8Z8AZlLklo</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Beatrice, Arwenyo</creator><creator>Varco, Jac J.</creator><creator>Dygert, Andrew</creator><creator>Atsar, Felix S.</creator><creator>Solomon, Sabrina</creator><creator>Thirumalai, Rooban Venkatesh K.G.</creator><creator>Pittman Jr, Charles U.</creator><creator>Mlsna, Todd</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8693-399X</orcidid><orcidid>https://orcid.org/0000-0002-4027-7245</orcidid><orcidid>https://orcid.org/0000-0002-4858-1372</orcidid><orcidid>https://orcid.org/0000-0002-7687-4084</orcidid><orcidid>https://orcid.org/0000-0002-1347-0066</orcidid><orcidid>https://orcid.org/0000-0001-6484-4366</orcidid></search><sort><creationdate>202204</creationdate><title>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</title><author>Beatrice, Arwenyo ; Varco, Jac J. ; Dygert, Andrew ; Atsar, Felix S. ; Solomon, Sabrina ; Thirumalai, Rooban Venkatesh K.G. ; Pittman Jr, Charles U. ; Mlsna, Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioavailability</topic><topic>Biochar supported-phosphate</topic><topic>Charcoal</topic><topic>Heavy metals</topic><topic>In-situ-immobilization</topic><topic>Lead</topic><topic>Phosphates</topic><topic>Pseudotsuga</topic><topic>Soil</topic><topic>Soil Pollutants - analysis</topic><topic>Soil pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beatrice, Arwenyo</creatorcontrib><creatorcontrib>Varco, Jac J.</creatorcontrib><creatorcontrib>Dygert, Andrew</creatorcontrib><creatorcontrib>Atsar, Felix S.</creatorcontrib><creatorcontrib>Solomon, Sabrina</creatorcontrib><creatorcontrib>Thirumalai, Rooban Venkatesh K.G.</creatorcontrib><creatorcontrib>Pittman Jr, Charles U.</creatorcontrib><creatorcontrib>Mlsna, Todd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beatrice, Arwenyo</au><au>Varco, Jac J.</au><au>Dygert, Andrew</au><au>Atsar, Felix S.</au><au>Solomon, Sabrina</au><au>Thirumalai, Rooban Venkatesh K.G.</au><au>Pittman Jr, Charles U.</au><au>Mlsna, Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2022-04</date><risdate>2022</risdate><volume>292</volume><spage>133355</spage><epage>133355</epage><pages>133355-133355</pages><artnum>133355</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L−1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L−1). The mechanism for immobilization of Pb2+ by BP occurs at pH < 7 through dissolution of hydroxyapatite embedded in BP during modification, followed by precipitation of insoluble Pb10(PO4)6(OH)2. The residual lead fraction in the lead-spiked soil increased by 20.9% following amendment with BP. These results indicate that biochar-supported phosphate is a candidate to reduce lead mobility (bioavailability) in polluted soil. This amendment may lower Pb2+ uptake into plants while minimizing the potential for water contamination due to Pb2+mobility.
[Display omitted]
•Biochar-supported phosphate (BP) effectively immobilized Pb2+ from polluted soil.•A 1% dose of BP removed 87% of the extractable Pb2+ originally present within 10 d.•Pb2+ react with Ca10(PO4)6(OH)2 to precipitated Pb10(PO4)6·(OH)2 in soil at pH < 7.•After amendment with 5% BP, the residual (immobilized) lead increased by 20.9%.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34929276</pmid><doi>10.1016/j.chemosphere.2021.133355</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8693-399X</orcidid><orcidid>https://orcid.org/0000-0002-4027-7245</orcidid><orcidid>https://orcid.org/0000-0002-4858-1372</orcidid><orcidid>https://orcid.org/0000-0002-7687-4084</orcidid><orcidid>https://orcid.org/0000-0002-1347-0066</orcidid><orcidid>https://orcid.org/0000-0001-6484-4366</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2022-04, Vol.292, p.133355-133355, Article 133355 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2612379228 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bioavailability Biochar supported-phosphate Charcoal Heavy metals In-situ-immobilization Lead Phosphates Pseudotsuga Soil Soil Pollutants - analysis Soil pollution |
title | Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead%20immobilization%20in%20simulated%20polluted%20soil%20by%20Douglas%20fir%20biochar-supported%20phosphate&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Beatrice,%20Arwenyo&rft.date=2022-04&rft.volume=292&rft.spage=133355&rft.epage=133355&rft.pages=133355-133355&rft.artnum=133355&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2021.133355&rft_dat=%3Cproquest_cross%3E2612379228%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-ee6666c0fceee39c8fc40eb7db0e27b7ec60f7d4020d5f9cb9bf24e0545573c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612379228&rft_id=info:pmid/34929276&rfr_iscdi=true |