Loading…
Fluorescent organic particle doped polymer-based gel dosimeter for neutron detection
The purpose of this work is to develop a material capable of detecting neutrons produced by photodisintegration in a linear accelerator for its medical use. In this study, we have developed a gel-like material doped with fluorescent organic particles. PPO at 1 wt% is used as primary dopant and POPOP...
Saved in:
Published in: | Applied radiation and isotopes 2022-02, Vol.180, p.110067-110067, Article 110067 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this work is to develop a material capable of detecting neutrons produced by photodisintegration in a linear accelerator for its medical use. In this study, we have developed a gel-like material doped with fluorescent organic particles. PPO at 1 wt% is used as primary dopant and POPOP as secondary one at 0.03 wt%. A set of four samples is produced, with boric acid concentrations of 0, 400, 800 and 1200 ppm. The viscoelastic properties of the material are characterized with rheological measurements, finding a gel-like behavior, i.e., a material that can keep its original shape if no stresses are applied, but can also be deformed by applying a moderate shear rate. Furthermore, the material was irradiated with gamma, electron, and neutron emission sources from 137Cs, 22Na, 60Co, 210Po, 90Sr and 241AmBe, and its response was measured in two different experimental settings, in two different institutions, for comparative purposes. From these measurements, one can clearly establish that the new material detects neutrons, electrons, and gammas within the MeV regions and below. Thus, our findings show that the developed material and its properties make it a promising technology for its use in a neutron detector.
•In this study, we have developed a gel-like material doped with fluorescent organic particles.•New gel to detect neutrons, as well as β-particles and γ-rays in distinguishable fashion through the PHS.•Sample has a highly elastic response in the interval of frequencies explored (0.1–200 rad/s). |
---|---|
ISSN: | 0969-8043 1872-9800 |
DOI: | 10.1016/j.apradiso.2021.110067 |