Loading…

Adsorption and association of xanthine in absence and presence of some divalent metal ions at the mercury/solution interface

The adsorption and interfacial orientations of xanthine were studied by out-of-phase ac voltammetry at a hanging mercury drop electrode. The adsorption equilibrium and its attainment have been investigated as a function of various parameters such as pH, adsorption potential, temperature, adsorption...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 1996, Vol.41 (18), p.2883-2892
Main Authors: Ahmed, M.E., Ibrahim, M.S., Temerk, Y.M., Kawde, A.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adsorption and interfacial orientations of xanthine were studied by out-of-phase ac voltammetry at a hanging mercury drop electrode. The adsorption equilibrium and its attainment have been investigated as a function of various parameters such as pH, adsorption potential, temperature, adsorption time, the nature of anions of the supporting electrolyte and the bulk concentration of xanthine. The changes in the stacking interactions of xanthine molecules in the presence of Cd(II), Cu(II), Co(II), Ni(II), Ca(II) and Mg(II) were studied by ac voltammetry as changes in “pits” or “wells” on double layer capacitance curves due to adsorption and association of M(II)-xanthine complexes on the charged interface. The results indicate that the complexation of xanthine molecules enhances the stacking interactions and hence would be expected to facilitate the formation of perpendicularly stacked layer of M(II)-xanthine complex on the electrode surface. The time dependence of the electrode impedance indicates that the formation of a compact film in absence and presence of these metal ions controlled by a fixed number of nuclei and the data were analysed according to the Avrami equation. The adsorption parameters of xanthine have been computed at different pH values in the absence and the increased presence of metal ions.
ISSN:0013-4686
1873-3859
DOI:10.1016/0013-4686(96)00117-X