Loading…
Deep and compact dentinal tubule occlusion via biomimetic mineralization and mineral overgrowth
Dentinal tubule (DT) occlusion by desensitizing agents has been widely applied to inhibit the transmission of external stimuli that cause dentin hypersensitivity (DH). However, most desensitizing agents merely accomplish porous blocking or the formation of a superficial tubular occlusion layer, resu...
Saved in:
Published in: | Nanoscale 2022-01, Vol.14 (3), p.642-652 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dentinal tubule (DT) occlusion by desensitizing agents has been widely applied to inhibit the transmission of external stimuli that cause dentin hypersensitivity (DH). However, most desensitizing agents merely accomplish porous blocking or the formation of a superficial tubular occlusion layer, resulting in a lack of mechanical and acid resistance and long-term stability. Herein, combining biomimetic mineralization and mineral overgrowth of the dentinal matrix was shown to effectively occlude DTs, resulting in the formation of a compact and deep occluding mineral layer that is strongly bound to the organic matrix on tubule walls. This DT occlusion method could achieve both mechanical resistance and acid resistance, demonstrating the potential of an inexpensive, long-term, and efficient therapy for treating DH. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d1nr05479a |