Loading…
Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry
Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening,...
Saved in:
Published in: | Future medicinal chemistry 2022-02, Vol.14 (4), p.245-270 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353 |
container_end_page | 270 |
container_issue | 4 |
container_start_page | 245 |
container_title | Future medicinal chemistry |
container_volume | 14 |
creator | Kumar, Sethu Arun Ananda Kumar, Thirumoorthy Durai Beeraka, Narasimha M Pujar, Gurubasavaraj Veeranna Singh, Manisha Narayana Akshatha, Handattu Sankara Bhagyalalitha, Meduri |
description | Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties. |
doi_str_mv | 10.4155/fmc-2021-0243 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2613291645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2613291645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EolXpki3Kko2LL4lnvEQVl0pFbGBtndgnE0PizPhSad6mEm_Ck-F0Slnhjc85_s4nWT8hrzm7annXvRtmSwUTnDLRymfknG86RbdabJ4_1VyfkcuUfrB6pNhq1b0kZ7LVUrdSnpNfX8COPmAzIcTgw66B4BqHuP838aFxkIG66O-w1mh98ktoZvi5Pi9D42LZNc4nu9xhPD4o7AjThGGHad0f_W6khwKTz8cHWQP2UKomr6IK5BF_3-9HiDNYLNlbmOrYlZTj8RV5McCU8PLxviDfP374dv2Z3n79dHP9_pZa2cpMJaKywAapnWB9uxWqYxaEEBslucKh11rgppO9dgxa1VvFe22hc5LxbS87eUHenrz7uBwKpmzm-iWcJgi4lGSE4lJortoVpSfUxiWliIPZRz9DPBrOzBqNqdGYNRqzRlP5N4_q0s_onui_QVRAn4Ch5BIxWY_Bojl1dcPbGtJ_5H8AlXmhYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613291645</pqid></control><display><type>article</type><title>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</title><source>PubMed Central</source><creator>Kumar, Sethu Arun ; Ananda Kumar, Thirumoorthy Durai ; Beeraka, Narasimha M ; Pujar, Gurubasavaraj Veeranna ; Singh, Manisha ; Narayana Akshatha, Handattu Sankara ; Bhagyalalitha, Meduri</creator><creatorcontrib>Kumar, Sethu Arun ; Ananda Kumar, Thirumoorthy Durai ; Beeraka, Narasimha M ; Pujar, Gurubasavaraj Veeranna ; Singh, Manisha ; Narayana Akshatha, Handattu Sankara ; Bhagyalalitha, Meduri</creatorcontrib><description>Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.</description><identifier>ISSN: 1756-8919</identifier><identifier>EISSN: 1756-8927</identifier><identifier>DOI: 10.4155/fmc-2021-0243</identifier><identifier>PMID: 34939433</identifier><language>eng</language><publisher>England: Newlands Press Ltd</publisher><subject>Artificial Intelligence ; blackbox models ; Blood-Brain Barrier - metabolism ; Decision Making ; Deep Learning ; Drug Delivery Systems ; Drug Discovery ; Drug Industry ; Drug Repositioning ; high-quality data acquisition ; Humans ; Machine Learning</subject><ispartof>Future medicinal chemistry, 2022-02, Vol.14 (4), p.245-270</ispartof><rights>2021 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</citedby><cites>FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</cites><orcidid>0000-0002-0658-3636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34939433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Sethu Arun</creatorcontrib><creatorcontrib>Ananda Kumar, Thirumoorthy Durai</creatorcontrib><creatorcontrib>Beeraka, Narasimha M</creatorcontrib><creatorcontrib>Pujar, Gurubasavaraj Veeranna</creatorcontrib><creatorcontrib>Singh, Manisha</creatorcontrib><creatorcontrib>Narayana Akshatha, Handattu Sankara</creatorcontrib><creatorcontrib>Bhagyalalitha, Meduri</creatorcontrib><title>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</title><title>Future medicinal chemistry</title><addtitle>Future Med Chem</addtitle><description>Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.</description><subject>Artificial Intelligence</subject><subject>blackbox models</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Decision Making</subject><subject>Deep Learning</subject><subject>Drug Delivery Systems</subject><subject>Drug Discovery</subject><subject>Drug Industry</subject><subject>Drug Repositioning</subject><subject>high-quality data acquisition</subject><subject>Humans</subject><subject>Machine Learning</subject><issn>1756-8919</issn><issn>1756-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhi0EolXpki3Kko2LL4lnvEQVl0pFbGBtndgnE0PizPhSad6mEm_Ck-F0Slnhjc85_s4nWT8hrzm7annXvRtmSwUTnDLRymfknG86RbdabJ4_1VyfkcuUfrB6pNhq1b0kZ7LVUrdSnpNfX8COPmAzIcTgw66B4BqHuP838aFxkIG66O-w1mh98ktoZvi5Pi9D42LZNc4nu9xhPD4o7AjThGGHad0f_W6khwKTz8cHWQP2UKomr6IK5BF_3-9HiDNYLNlbmOrYlZTj8RV5McCU8PLxviDfP374dv2Z3n79dHP9_pZa2cpMJaKywAapnWB9uxWqYxaEEBslucKh11rgppO9dgxa1VvFe22hc5LxbS87eUHenrz7uBwKpmzm-iWcJgi4lGSE4lJortoVpSfUxiWliIPZRz9DPBrOzBqNqdGYNRqzRlP5N4_q0s_onui_QVRAn4Ch5BIxWY_Bojl1dcPbGtJ_5H8AlXmhYA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Kumar, Sethu Arun</creator><creator>Ananda Kumar, Thirumoorthy Durai</creator><creator>Beeraka, Narasimha M</creator><creator>Pujar, Gurubasavaraj Veeranna</creator><creator>Singh, Manisha</creator><creator>Narayana Akshatha, Handattu Sankara</creator><creator>Bhagyalalitha, Meduri</creator><general>Newlands Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0658-3636</orcidid></search><sort><creationdate>20220201</creationdate><title>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</title><author>Kumar, Sethu Arun ; Ananda Kumar, Thirumoorthy Durai ; Beeraka, Narasimha M ; Pujar, Gurubasavaraj Veeranna ; Singh, Manisha ; Narayana Akshatha, Handattu Sankara ; Bhagyalalitha, Meduri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>blackbox models</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Decision Making</topic><topic>Deep Learning</topic><topic>Drug Delivery Systems</topic><topic>Drug Discovery</topic><topic>Drug Industry</topic><topic>Drug Repositioning</topic><topic>high-quality data acquisition</topic><topic>Humans</topic><topic>Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sethu Arun</creatorcontrib><creatorcontrib>Ananda Kumar, Thirumoorthy Durai</creatorcontrib><creatorcontrib>Beeraka, Narasimha M</creatorcontrib><creatorcontrib>Pujar, Gurubasavaraj Veeranna</creatorcontrib><creatorcontrib>Singh, Manisha</creatorcontrib><creatorcontrib>Narayana Akshatha, Handattu Sankara</creatorcontrib><creatorcontrib>Bhagyalalitha, Meduri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Future medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sethu Arun</au><au>Ananda Kumar, Thirumoorthy Durai</au><au>Beeraka, Narasimha M</au><au>Pujar, Gurubasavaraj Veeranna</au><au>Singh, Manisha</au><au>Narayana Akshatha, Handattu Sankara</au><au>Bhagyalalitha, Meduri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</atitle><jtitle>Future medicinal chemistry</jtitle><addtitle>Future Med Chem</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>245</spage><epage>270</epage><pages>245-270</pages><issn>1756-8919</issn><eissn>1756-8927</eissn><abstract>Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.</abstract><cop>England</cop><pub>Newlands Press Ltd</pub><pmid>34939433</pmid><doi>10.4155/fmc-2021-0243</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0658-3636</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-8919 |
ispartof | Future medicinal chemistry, 2022-02, Vol.14 (4), p.245-270 |
issn | 1756-8919 1756-8927 |
language | eng |
recordid | cdi_proquest_miscellaneous_2613291645 |
source | PubMed Central |
subjects | Artificial Intelligence blackbox models Blood-Brain Barrier - metabolism Decision Making Deep Learning Drug Delivery Systems Drug Discovery Drug Industry Drug Repositioning high-quality data acquisition Humans Machine Learning |
title | Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20deep%20learning%20in%20data-driven%20decision%20making%20of%20drug%20discovery%20and%20challenges%20in%20high-quality%20data%20acquisition%20in%20the%C2%A0pharmaceutical%20industry&rft.jtitle=Future%20medicinal%20chemistry&rft.au=Kumar,%20Sethu%20Arun&rft.date=2022-02-01&rft.volume=14&rft.issue=4&rft.spage=245&rft.epage=270&rft.pages=245-270&rft.issn=1756-8919&rft.eissn=1756-8927&rft_id=info:doi/10.4155/fmc-2021-0243&rft_dat=%3Cproquest_cross%3E2613291645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2613291645&rft_id=info:pmid/34939433&rfr_iscdi=true |