Loading…

Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry

Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening,...

Full description

Saved in:
Bibliographic Details
Published in:Future medicinal chemistry 2022-02, Vol.14 (4), p.245-270
Main Authors: Kumar, Sethu Arun, Ananda Kumar, Thirumoorthy Durai, Beeraka, Narasimha M, Pujar, Gurubasavaraj Veeranna, Singh, Manisha, Narayana Akshatha, Handattu Sankara, Bhagyalalitha, Meduri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353
cites cdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353
container_end_page 270
container_issue 4
container_start_page 245
container_title Future medicinal chemistry
container_volume 14
creator Kumar, Sethu Arun
Ananda Kumar, Thirumoorthy Durai
Beeraka, Narasimha M
Pujar, Gurubasavaraj Veeranna
Singh, Manisha
Narayana Akshatha, Handattu Sankara
Bhagyalalitha, Meduri
description Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.
doi_str_mv 10.4155/fmc-2021-0243
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2613291645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2613291645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EolXpki3Kko2LL4lnvEQVl0pFbGBtndgnE0PizPhSad6mEm_Ck-F0Slnhjc85_s4nWT8hrzm7annXvRtmSwUTnDLRymfknG86RbdabJ4_1VyfkcuUfrB6pNhq1b0kZ7LVUrdSnpNfX8COPmAzIcTgw66B4BqHuP838aFxkIG66O-w1mh98ktoZvi5Pi9D42LZNc4nu9xhPD4o7AjThGGHad0f_W6khwKTz8cHWQP2UKomr6IK5BF_3-9HiDNYLNlbmOrYlZTj8RV5McCU8PLxviDfP374dv2Z3n79dHP9_pZa2cpMJaKywAapnWB9uxWqYxaEEBslucKh11rgppO9dgxa1VvFe22hc5LxbS87eUHenrz7uBwKpmzm-iWcJgi4lGSE4lJortoVpSfUxiWliIPZRz9DPBrOzBqNqdGYNRqzRlP5N4_q0s_onui_QVRAn4Ch5BIxWY_Bojl1dcPbGtJ_5H8AlXmhYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613291645</pqid></control><display><type>article</type><title>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</title><source>PubMed Central</source><creator>Kumar, Sethu Arun ; Ananda Kumar, Thirumoorthy Durai ; Beeraka, Narasimha M ; Pujar, Gurubasavaraj Veeranna ; Singh, Manisha ; Narayana Akshatha, Handattu Sankara ; Bhagyalalitha, Meduri</creator><creatorcontrib>Kumar, Sethu Arun ; Ananda Kumar, Thirumoorthy Durai ; Beeraka, Narasimha M ; Pujar, Gurubasavaraj Veeranna ; Singh, Manisha ; Narayana Akshatha, Handattu Sankara ; Bhagyalalitha, Meduri</creatorcontrib><description>Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.</description><identifier>ISSN: 1756-8919</identifier><identifier>EISSN: 1756-8927</identifier><identifier>DOI: 10.4155/fmc-2021-0243</identifier><identifier>PMID: 34939433</identifier><language>eng</language><publisher>England: Newlands Press Ltd</publisher><subject>Artificial Intelligence ; blackbox models ; Blood-Brain Barrier - metabolism ; Decision Making ; Deep Learning ; Drug Delivery Systems ; Drug Discovery ; Drug Industry ; Drug Repositioning ; high-quality data acquisition ; Humans ; Machine Learning</subject><ispartof>Future medicinal chemistry, 2022-02, Vol.14 (4), p.245-270</ispartof><rights>2021 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</citedby><cites>FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</cites><orcidid>0000-0002-0658-3636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34939433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Sethu Arun</creatorcontrib><creatorcontrib>Ananda Kumar, Thirumoorthy Durai</creatorcontrib><creatorcontrib>Beeraka, Narasimha M</creatorcontrib><creatorcontrib>Pujar, Gurubasavaraj Veeranna</creatorcontrib><creatorcontrib>Singh, Manisha</creatorcontrib><creatorcontrib>Narayana Akshatha, Handattu Sankara</creatorcontrib><creatorcontrib>Bhagyalalitha, Meduri</creatorcontrib><title>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</title><title>Future medicinal chemistry</title><addtitle>Future Med Chem</addtitle><description>Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.</description><subject>Artificial Intelligence</subject><subject>blackbox models</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Decision Making</subject><subject>Deep Learning</subject><subject>Drug Delivery Systems</subject><subject>Drug Discovery</subject><subject>Drug Industry</subject><subject>Drug Repositioning</subject><subject>high-quality data acquisition</subject><subject>Humans</subject><subject>Machine Learning</subject><issn>1756-8919</issn><issn>1756-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhi0EolXpki3Kko2LL4lnvEQVl0pFbGBtndgnE0PizPhSad6mEm_Ck-F0Slnhjc85_s4nWT8hrzm7annXvRtmSwUTnDLRymfknG86RbdabJ4_1VyfkcuUfrB6pNhq1b0kZ7LVUrdSnpNfX8COPmAzIcTgw66B4BqHuP838aFxkIG66O-w1mh98ktoZvi5Pi9D42LZNc4nu9xhPD4o7AjThGGHad0f_W6khwKTz8cHWQP2UKomr6IK5BF_3-9HiDNYLNlbmOrYlZTj8RV5McCU8PLxviDfP374dv2Z3n79dHP9_pZa2cpMJaKywAapnWB9uxWqYxaEEBslucKh11rgppO9dgxa1VvFe22hc5LxbS87eUHenrz7uBwKpmzm-iWcJgi4lGSE4lJortoVpSfUxiWliIPZRz9DPBrOzBqNqdGYNRqzRlP5N4_q0s_onui_QVRAn4Ch5BIxWY_Bojl1dcPbGtJ_5H8AlXmhYA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Kumar, Sethu Arun</creator><creator>Ananda Kumar, Thirumoorthy Durai</creator><creator>Beeraka, Narasimha M</creator><creator>Pujar, Gurubasavaraj Veeranna</creator><creator>Singh, Manisha</creator><creator>Narayana Akshatha, Handattu Sankara</creator><creator>Bhagyalalitha, Meduri</creator><general>Newlands Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0658-3636</orcidid></search><sort><creationdate>20220201</creationdate><title>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</title><author>Kumar, Sethu Arun ; Ananda Kumar, Thirumoorthy Durai ; Beeraka, Narasimha M ; Pujar, Gurubasavaraj Veeranna ; Singh, Manisha ; Narayana Akshatha, Handattu Sankara ; Bhagyalalitha, Meduri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>blackbox models</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Decision Making</topic><topic>Deep Learning</topic><topic>Drug Delivery Systems</topic><topic>Drug Discovery</topic><topic>Drug Industry</topic><topic>Drug Repositioning</topic><topic>high-quality data acquisition</topic><topic>Humans</topic><topic>Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sethu Arun</creatorcontrib><creatorcontrib>Ananda Kumar, Thirumoorthy Durai</creatorcontrib><creatorcontrib>Beeraka, Narasimha M</creatorcontrib><creatorcontrib>Pujar, Gurubasavaraj Veeranna</creatorcontrib><creatorcontrib>Singh, Manisha</creatorcontrib><creatorcontrib>Narayana Akshatha, Handattu Sankara</creatorcontrib><creatorcontrib>Bhagyalalitha, Meduri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Future medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sethu Arun</au><au>Ananda Kumar, Thirumoorthy Durai</au><au>Beeraka, Narasimha M</au><au>Pujar, Gurubasavaraj Veeranna</au><au>Singh, Manisha</au><au>Narayana Akshatha, Handattu Sankara</au><au>Bhagyalalitha, Meduri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry</atitle><jtitle>Future medicinal chemistry</jtitle><addtitle>Future Med Chem</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>245</spage><epage>270</epage><pages>245-270</pages><issn>1756-8919</issn><eissn>1756-8927</eissn><abstract>Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.</abstract><cop>England</cop><pub>Newlands Press Ltd</pub><pmid>34939433</pmid><doi>10.4155/fmc-2021-0243</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0658-3636</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1756-8919
ispartof Future medicinal chemistry, 2022-02, Vol.14 (4), p.245-270
issn 1756-8919
1756-8927
language eng
recordid cdi_proquest_miscellaneous_2613291645
source PubMed Central
subjects Artificial Intelligence
blackbox models
Blood-Brain Barrier - metabolism
Decision Making
Deep Learning
Drug Delivery Systems
Drug Discovery
Drug Industry
Drug Repositioning
high-quality data acquisition
Humans
Machine Learning
title Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20deep%20learning%20in%20data-driven%20decision%20making%20of%20drug%20discovery%20and%20challenges%20in%20high-quality%20data%20acquisition%20in%20the%C2%A0pharmaceutical%20industry&rft.jtitle=Future%20medicinal%20chemistry&rft.au=Kumar,%20Sethu%20Arun&rft.date=2022-02-01&rft.volume=14&rft.issue=4&rft.spage=245&rft.epage=270&rft.pages=245-270&rft.issn=1756-8919&rft.eissn=1756-8927&rft_id=info:doi/10.4155/fmc-2021-0243&rft_dat=%3Cproquest_cross%3E2613291645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-3ee6ca0f39d20b482650ca22276316efb992e753b9d0a46bc61b9ca5d3018b353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2613291645&rft_id=info:pmid/34939433&rfr_iscdi=true