Loading…

Nanometer scale fabrication in mercury cadmium telluride using methane/hydrogen electron cyclotron resonance microwave plasmas

The fabrication of nanometer scale features in the narrow gap, compound semiconductor mercury cadmium telluride has been demonstrated through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave generated methane/hydrogen plasma. The eff...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 1993-05, Vol.62 (19), p.2362-2364
Main Authors: EDDY, C. R, DOBISZ, E. A, HOFFMAN, C. A, MEYER, J. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-38eca75bd0606c7b2606b583230273d8d9a217252918e390fb464881ba8ddc643
cites cdi_FETCH-LOGICAL-c319t-38eca75bd0606c7b2606b583230273d8d9a217252918e390fb464881ba8ddc643
container_end_page 2364
container_issue 19
container_start_page 2362
container_title Applied physics letters
container_volume 62
creator EDDY, C. R
DOBISZ, E. A
HOFFMAN, C. A
MEYER, J. R
description The fabrication of nanometer scale features in the narrow gap, compound semiconductor mercury cadmium telluride has been demonstrated through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave generated methane/hydrogen plasma. The effects of methane concentration, substrate bias, total pressure, and substrate position with respect to the ECR condition on etch rate, anisotropy, and overall etch performance have been examined. The optimized process resulting from these studies has produced the first mercury-based nanostructures consisting of 30–60 nm features with sidewall angles of 88°.
doi_str_mv 10.1063/1.109390
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26135055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26135055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-38eca75bd0606c7b2606b583230273d8d9a217252918e390fb464881ba8ddc643</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlILEJ_iAEJdQO44T54gqXlIFFzhHG3vTGiVOsRNQLnw7Lq04za52djQzhFxydstZLhY8QilKdkRmnBVFIjhXx2TGGBNJXkp-Ss5C-IirTIWYkZ8XcH2HA3oaNLRIG6i91TDY3lHraIdej36iGkxnx44O2LajtwbpGKxbx_uwAYeLzWR8v0ZHsUU9-PisJ932f5PH0DtwGmlnte-_4QvptoXQQTgnJw20AS8OOCfvD_dvy6dk9fr4vLxbJVrwckiEQg2FrA3LWa6LOo1QSyVSwdJCGGVKSHmRyrTkCmP4ps7yTClegzJG55mYk-u97tb3nyOGoeps0DFL9N6PoUpzLiSTMhJv9sRoNASPTbX1tgM_VZxVu4IrXu0LjtSrgybsqmt8jGjDPz8rVMlkKX4B2GZ8Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26135055</pqid></control><display><type>article</type><title>Nanometer scale fabrication in mercury cadmium telluride using methane/hydrogen electron cyclotron resonance microwave plasmas</title><source>AIP Digital Archive</source><creator>EDDY, C. R ; DOBISZ, E. A ; HOFFMAN, C. A ; MEYER, J. R</creator><creatorcontrib>EDDY, C. R ; DOBISZ, E. A ; HOFFMAN, C. A ; MEYER, J. R</creatorcontrib><description>The fabrication of nanometer scale features in the narrow gap, compound semiconductor mercury cadmium telluride has been demonstrated through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave generated methane/hydrogen plasma. The effects of methane concentration, substrate bias, total pressure, and substrate position with respect to the ECR condition on etch rate, anisotropy, and overall etch performance have been examined. The optimized process resulting from these studies has produced the first mercury-based nanostructures consisting of 30–60 nm features with sidewall angles of 88°.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.109390</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Mechanical and acoustical properties; adhesion ; Physics ; Solid surfaces and solid-solid interfaces ; Solid-fluid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Applied physics letters, 1993-05, Vol.62 (19), p.2362-2364</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-38eca75bd0606c7b2606b583230273d8d9a217252918e390fb464881ba8ddc643</citedby><cites>FETCH-LOGICAL-c319t-38eca75bd0606c7b2606b583230273d8d9a217252918e390fb464881ba8ddc643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4789059$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>EDDY, C. R</creatorcontrib><creatorcontrib>DOBISZ, E. A</creatorcontrib><creatorcontrib>HOFFMAN, C. A</creatorcontrib><creatorcontrib>MEYER, J. R</creatorcontrib><title>Nanometer scale fabrication in mercury cadmium telluride using methane/hydrogen electron cyclotron resonance microwave plasmas</title><title>Applied physics letters</title><description>The fabrication of nanometer scale features in the narrow gap, compound semiconductor mercury cadmium telluride has been demonstrated through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave generated methane/hydrogen plasma. The effects of methane concentration, substrate bias, total pressure, and substrate position with respect to the ECR condition on etch rate, anisotropy, and overall etch performance have been examined. The optimized process resulting from these studies has produced the first mercury-based nanostructures consisting of 30–60 nm features with sidewall angles of 88°.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Mechanical and acoustical properties; adhesion</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Solid-fluid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlILEJ_iAEJdQO44T54gqXlIFFzhHG3vTGiVOsRNQLnw7Lq04za52djQzhFxydstZLhY8QilKdkRmnBVFIjhXx2TGGBNJXkp-Ss5C-IirTIWYkZ8XcH2HA3oaNLRIG6i91TDY3lHraIdej36iGkxnx44O2LajtwbpGKxbx_uwAYeLzWR8v0ZHsUU9-PisJ932f5PH0DtwGmlnte-_4QvptoXQQTgnJw20AS8OOCfvD_dvy6dk9fr4vLxbJVrwckiEQg2FrA3LWa6LOo1QSyVSwdJCGGVKSHmRyrTkCmP4ps7yTClegzJG55mYk-u97tb3nyOGoeps0DFL9N6PoUpzLiSTMhJv9sRoNASPTbX1tgM_VZxVu4IrXu0LjtSrgybsqmt8jGjDPz8rVMlkKX4B2GZ8Mg</recordid><startdate>19930510</startdate><enddate>19930510</enddate><creator>EDDY, C. R</creator><creator>DOBISZ, E. A</creator><creator>HOFFMAN, C. A</creator><creator>MEYER, J. R</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19930510</creationdate><title>Nanometer scale fabrication in mercury cadmium telluride using methane/hydrogen electron cyclotron resonance microwave plasmas</title><author>EDDY, C. R ; DOBISZ, E. A ; HOFFMAN, C. A ; MEYER, J. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-38eca75bd0606c7b2606b583230273d8d9a217252918e390fb464881ba8ddc643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Mechanical and acoustical properties; adhesion</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Solid-fluid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EDDY, C. R</creatorcontrib><creatorcontrib>DOBISZ, E. A</creatorcontrib><creatorcontrib>HOFFMAN, C. A</creatorcontrib><creatorcontrib>MEYER, J. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EDDY, C. R</au><au>DOBISZ, E. A</au><au>HOFFMAN, C. A</au><au>MEYER, J. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanometer scale fabrication in mercury cadmium telluride using methane/hydrogen electron cyclotron resonance microwave plasmas</atitle><jtitle>Applied physics letters</jtitle><date>1993-05-10</date><risdate>1993</risdate><volume>62</volume><issue>19</issue><spage>2362</spage><epage>2364</epage><pages>2362-2364</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The fabrication of nanometer scale features in the narrow gap, compound semiconductor mercury cadmium telluride has been demonstrated through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave generated methane/hydrogen plasma. The effects of methane concentration, substrate bias, total pressure, and substrate position with respect to the ECR condition on etch rate, anisotropy, and overall etch performance have been examined. The optimized process resulting from these studies has produced the first mercury-based nanostructures consisting of 30–60 nm features with sidewall angles of 88°.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.109390</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 1993-05, Vol.62 (19), p.2362-2364
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_miscellaneous_26135055
source AIP Digital Archive
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Mechanical and acoustical properties
adhesion
Physics
Solid surfaces and solid-solid interfaces
Solid-fluid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Nanometer scale fabrication in mercury cadmium telluride using methane/hydrogen electron cyclotron resonance microwave plasmas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanometer%20scale%20fabrication%20in%20mercury%20cadmium%20telluride%20using%20methane/hydrogen%20electron%20cyclotron%20resonance%20microwave%20plasmas&rft.jtitle=Applied%20physics%20letters&rft.au=EDDY,%20C.%20R&rft.date=1993-05-10&rft.volume=62&rft.issue=19&rft.spage=2362&rft.epage=2364&rft.pages=2362-2364&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.109390&rft_dat=%3Cproquest_cross%3E26135055%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-38eca75bd0606c7b2606b583230273d8d9a217252918e390fb464881ba8ddc643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26135055&rft_id=info:pmid/&rfr_iscdi=true