Loading…

Preparation and Characterization of Stable Amorphous Glassy Solution of BCS II and IV Drugs

The focus of the present investigation was to develop amorphous glassy solutions (AGSs) of BCS Class II and IV drugs using sucrose acetate isobutyrate (SAIB). The drugs studied were rifaximin (RFX), dasatinib (DST), aripiprazole (APZ), dolutegravir (DLT), cyclosporine (CYS), itraconazole (ITZ), tacr...

Full description

Saved in:
Bibliographic Details
Published in:AAPS PharmSciTech 2021-12, Vol.23 (1), p.35-35, Article 35
Main Authors: Dharani, Sathish, Sediri, Khaldia, Cook, Phillip, Arunagiri, Rajendran, Khan, Mansoor A., Rahman, Ziyaur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The focus of the present investigation was to develop amorphous glassy solutions (AGSs) of BCS Class II and IV drugs using sucrose acetate isobutyrate (SAIB). The drugs studied were rifaximin (RFX), dasatinib (DST), aripiprazole (APZ), dolutegravir (DLT), cyclosporine (CYS), itraconazole (ITZ), tacrolimus (TAC), sirolimus (SRL), aprepitant (APT), and carbamazepine (CBZ). AGSs were prepared by dissolving known quantity of the drug in the SAIB at 120 (TAC and APZ), 140 (CYS) or 150 o C (RFX, DST, DLT, ITZ, SRL, APT, and CBZ). They were characterized visually and by NIR, NIR hyperspectroscopy (NIR-H), and XRPD. Stability were determined by exposing open vials to 40 o C/75% RH for a week. AGSs behave like a glassy solid at room temperature and liquified above 60 o C. The solubility of APT, DLT, SRL, APZ, RFX, CBZ, TAC and CYS in SAIB was 0.4±0.0, 1.7±0.4, 1.9±0.0, 21.6±2.6, 36.4±0.9, 76.5±4.0, 115.1±2.3, and 239.0±12.6 mg/g, respectively. NIR, NIR-H, and XRPD data indicated the amorphous nature of the AGSs. Furthermore, AGSs were stable against devitrification on exposure to high temperature and humidity. In summary, SAIB can be employed to develop stable AGSs of poorly soluble drugs to increase dissolution, and oral bioavailability with the addition of hydrophilic excipients.
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-021-02198-1