Loading…
Preparation of carbonyl, hydroxyl, and amino-functionalized microporous carbonaceous nanospheres from syrup-based waste to remove sulfamethazine
Sulfadiazine (SDZ) was a persistent sulfonamide antibiotic with a potential risk to human health. The waste dipping syrup was considered useless and environmentally unfriendly solution. In this work, carbonyl-, hydroxyl-, and amino-functionalized microporous carbonaceous nanospheres were synthesized...
Saved in:
Published in: | Environmental science and pollution research international 2022-04, Vol.29 (19), p.27688-27702 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sulfadiazine (SDZ) was a persistent sulfonamide antibiotic with a potential risk to human health. The waste dipping syrup was considered useless and environmentally unfriendly solution. In this work, carbonyl-, hydroxyl-, and amino-functionalized microporous carbonaceous nanospheres were synthesized using waste dipping syrup with glucose, fructose, and nitrogen, which was used as precursor for hydrothermal and pyrolysis process. The products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), the point of zero charge (PZC), Xray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET). The carbonaceous nanospheres with large BET surface area (924.528 m
2
/g), micropores (2.127 nm), and high micro-porosity (89.54 %) allowed the rapid diffusion of SDZ (0.512nm×0.738 nm) into micropores of nanospheres. The majority SDZ (initial concentration = 20 mg/L) was removed (>96.8%) in the presence of 1.0 g/L nanoparticles after 40-min reaction at pH = 6.0. The adsorption capacity of SDZ onto nanospheres was 96.6 mg/g. The adsorption kinetic and equilibrium followed pseudo-first-order model and Langmuir isotherm, respectively. The intra-particle diffusion model indicated a three-step adsorption process. In addition, the regenerated nanospheres could be reused over four recycles. The optimal fabrication was realized at lower hydrothermal and pyrolysis temperature of 180 °C and 400 °C, respectively, which involved no additional chemical activating agent and had a high yield (70.8 %). Collectively, hydroxylation, carboxylation, amination, large specific surface area, and multi-microporosity may be responsible for improved adsorption performance of SDZ onto nanospheres. The findings provided a novel pathway for SDZ-loading wastewater treatment using waste syrup.
Graphical abstract |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-18375-5 |