Loading…
CRISPR/Cas12a-Derived electrochemical aptasensor for ultrasensitive detection of COVID-19 nucleocapsid protein
Fast, affordable, portable, and sensitive technology to detect COVID-19 is critical to address the current outbreak. Here, we present a CRISPR/Cas12a-derived electrochemical aptasensor for cost-effective, fast, and ultrasensitive COVID-19 nucleocapsid protein (Np) detection. First, an electrochemica...
Saved in:
Published in: | Biosensors & bioelectronics 2022-03, Vol.200, p.113922-113922, Article 113922 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fast, affordable, portable, and sensitive technology to detect COVID-19 is critical to address the current outbreak. Here, we present a CRISPR/Cas12a-derived electrochemical aptasensor for cost-effective, fast, and ultrasensitive COVID-19 nucleocapsid protein (Np) detection. First, an electrochemical sensing interface was fabricated by immobilizing methylene blue labeled poly adenines DNA sequence (polyA-MB electrochemical reporter) on a gold electrode surface. Second, an arched probe was prepared via hybridization of Np aptamer and an activator strand. In the presence of COVID-19 Np, the activator strand could be released from the arched probe due to the specific interaction between the target and the aptamer, which then activated the trans-cleavage activity of the CRISPR/Cas12a system. Subsequently, the polyA-MB reporters were cleaved from the electrode surface, decreasing the current of differential pulse voltammetry (DPV) at a potential of −0.27 V(vs. Ag/AgCl). The CRISPR/Cas12a-derived electrochemical aptasensor shows a highly efficient performance for COVID-19 Np detection in 50 pg mL-1 to 100 ng mL-1 with a limit of detection (LOD) low to 16.5 pg mL-1. Notably, the whole process of one test can be completed within 30 min. Simultaneously, the aptasensor displays a high selectivity to other proteins. The further measurements demonstrate that the aptasensor is robust in a natural system for point-of-care testing, such as in tap water, milk, or serum. The aptasensor is universal and expandable and holds great potential in the COVID-19 early diagnosis, environmental surveillance, food security, and other aspects.
•Integrating CRISPR/Cas12a with the electrochemical assay has achieved ultrasensitive detection of COVID-19 Np.•The aptasensor provides an effective platform for practical, economic, and deployable detection of COVID-19.•The aptasensor is independent of large instruments and proprietary laboratories, making analysis flexible and convenient.•The aptasensor holds great potential as point-of-care testing (POCT) for COVID-19 in tap water, milk, or serum. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2021.113922 |