Loading…

Subject specific finite element modelling of periprosthetic femoral fractures in different load cases

Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the mechanical behavior of biomedical materials 2022-02, Vol.126, p.105059-105059, Article 105059
Main Authors: Hennicke, N.S., Saemann, M., Kluess, D., Bader, R., Sander, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-e271097b5ec86df8dd4c5e994bdbb170dfdda2dea987ad089c21b4923e98f05c3
cites cdi_FETCH-LOGICAL-c409t-e271097b5ec86df8dd4c5e994bdbb170dfdda2dea987ad089c21b4923e98f05c3
container_end_page 105059
container_issue
container_start_page 105059
container_title Journal of the mechanical behavior of biomedical materials
container_volume 126
creator Hennicke, N.S.
Saemann, M.
Kluess, D.
Bader, R.
Sander, M.
description Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to the anisotropic and complex hierarchical structure of bone, the mechanical behaviour under large strains is difficult to predict. In this study, a state-of-the-art subject specific FE modelling technique for bone is utilised to generate and investigate PFF. A bilinear constitutive law is applied to bone tissue in subject specific FE models of five human femurs which are virtually implanted with a straight hip stem to numerically analyse PFF. The material parameters of the models are expressed as a function of bone ash density and mapped node wise to the FE mesh. In this way the subject specific, heterogeneous structure of bone is mimicked. For material mapping of the parameters, computed tomography (CT) images of the original fresh-frozen femurs are used. Periprosthetic fractures are generated by deleting elements on the basis of a critical plastic strain failure criterion. The models are analysed under physiological and clinically relevant conditions in two different load cases re-enacting stumbling and a sideways fall on the hip. The results of the analyses are quantified with experimental data from previous work. With regard to fracture pattern, stiffness and failure load the simulations of the load case stumbling delivered the most stable and accurate results. In general, mapping of material properties was found to be an appropriate way to reproduce PFF with finite element models. [Display omitted]
doi_str_mv 10.1016/j.jmbbm.2021.105059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618232150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616121006846</els_id><sourcerecordid>2618232150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e271097b5ec86df8dd4c5e994bdbb170dfdda2dea987ad089c21b4923e98f05c3</originalsourceid><addsrcrecordid>eNp9kEtr3DAURkVJyOT1CwpFy248uZItW1p0UUKbBAJZJF0LPa5aGT-mkl3ov4-mM-kyK13E-e7jEPKRwZYBa2_6bT9aO245cFZ-BAj1gZwz2ckKmISTUneCVS1r2YZc5NwDtABSnpFN3SglZC3OCT6vtke30LxDF0N0NMQpLkhxwBGnhY6zx2GI0086B7rDFHdpzssvXPYojnMyAw3JuGVNmGmcqI8hYNpHh9l46kzGfEVOgxkyXh_fS_Lj-7eX2_vq8enu4fbrY-UaUEuFvGOgOivQydYH6X3jBCrVWG8t68AH7w33aJTsjAepHGe2UbxGJQMIV1-Sz4e-ZcnfK-ZFjzG7sr-ZcF6z5i2TvOZMQEHrA-rKPTlh0LsUR5P-agZ671f3-p9fvferD35L6tNxwGpH9P8zb0IL8OUAYDnzT8Sks4s4OfQxFc3az_HdAa9rVI8j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618232150</pqid></control><display><type>article</type><title>Subject specific finite element modelling of periprosthetic femoral fractures in different load cases</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hennicke, N.S. ; Saemann, M. ; Kluess, D. ; Bader, R. ; Sander, M.</creator><creatorcontrib>Hennicke, N.S. ; Saemann, M. ; Kluess, D. ; Bader, R. ; Sander, M.</creatorcontrib><description>Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to the anisotropic and complex hierarchical structure of bone, the mechanical behaviour under large strains is difficult to predict. In this study, a state-of-the-art subject specific FE modelling technique for bone is utilised to generate and investigate PFF. A bilinear constitutive law is applied to bone tissue in subject specific FE models of five human femurs which are virtually implanted with a straight hip stem to numerically analyse PFF. The material parameters of the models are expressed as a function of bone ash density and mapped node wise to the FE mesh. In this way the subject specific, heterogeneous structure of bone is mimicked. For material mapping of the parameters, computed tomography (CT) images of the original fresh-frozen femurs are used. Periprosthetic fractures are generated by deleting elements on the basis of a critical plastic strain failure criterion. The models are analysed under physiological and clinically relevant conditions in two different load cases re-enacting stumbling and a sideways fall on the hip. The results of the analyses are quantified with experimental data from previous work. With regard to fracture pattern, stiffness and failure load the simulations of the load case stumbling delivered the most stable and accurate results. In general, mapping of material properties was found to be an appropriate way to reproduce PFF with finite element models. [Display omitted]</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2021.105059</identifier><identifier>PMID: 34995835</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Arthroplasty, Replacement, Hip ; Bone tissue ; Cementless hip stem ; Damage ; Element deletion ; Femoral Fractures - diagnostic imaging ; Femoral Fractures - surgery ; Femur - diagnostic imaging ; Femur - surgery ; Finite Element Analysis ; Fracture ; Humans ; Periprosthetic femoral fracture ; Periprosthetic Fractures - diagnostic imaging ; Sideways fall ; Stumbling ; Subject specific modelling</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2022-02, Vol.126, p.105059-105059, Article 105059</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e271097b5ec86df8dd4c5e994bdbb170dfdda2dea987ad089c21b4923e98f05c3</citedby><cites>FETCH-LOGICAL-c409t-e271097b5ec86df8dd4c5e994bdbb170dfdda2dea987ad089c21b4923e98f05c3</cites><orcidid>0000-0003-1244-6360 ; 0000-0003-1222-272X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34995835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hennicke, N.S.</creatorcontrib><creatorcontrib>Saemann, M.</creatorcontrib><creatorcontrib>Kluess, D.</creatorcontrib><creatorcontrib>Bader, R.</creatorcontrib><creatorcontrib>Sander, M.</creatorcontrib><title>Subject specific finite element modelling of periprosthetic femoral fractures in different load cases</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to the anisotropic and complex hierarchical structure of bone, the mechanical behaviour under large strains is difficult to predict. In this study, a state-of-the-art subject specific FE modelling technique for bone is utilised to generate and investigate PFF. A bilinear constitutive law is applied to bone tissue in subject specific FE models of five human femurs which are virtually implanted with a straight hip stem to numerically analyse PFF. The material parameters of the models are expressed as a function of bone ash density and mapped node wise to the FE mesh. In this way the subject specific, heterogeneous structure of bone is mimicked. For material mapping of the parameters, computed tomography (CT) images of the original fresh-frozen femurs are used. Periprosthetic fractures are generated by deleting elements on the basis of a critical plastic strain failure criterion. The models are analysed under physiological and clinically relevant conditions in two different load cases re-enacting stumbling and a sideways fall on the hip. The results of the analyses are quantified with experimental data from previous work. With regard to fracture pattern, stiffness and failure load the simulations of the load case stumbling delivered the most stable and accurate results. In general, mapping of material properties was found to be an appropriate way to reproduce PFF with finite element models. [Display omitted]</description><subject>Arthroplasty, Replacement, Hip</subject><subject>Bone tissue</subject><subject>Cementless hip stem</subject><subject>Damage</subject><subject>Element deletion</subject><subject>Femoral Fractures - diagnostic imaging</subject><subject>Femoral Fractures - surgery</subject><subject>Femur - diagnostic imaging</subject><subject>Femur - surgery</subject><subject>Finite Element Analysis</subject><subject>Fracture</subject><subject>Humans</subject><subject>Periprosthetic femoral fracture</subject><subject>Periprosthetic Fractures - diagnostic imaging</subject><subject>Sideways fall</subject><subject>Stumbling</subject><subject>Subject specific modelling</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAURkVJyOT1CwpFy248uZItW1p0UUKbBAJZJF0LPa5aGT-mkl3ov4-mM-kyK13E-e7jEPKRwZYBa2_6bT9aO245cFZ-BAj1gZwz2ckKmISTUneCVS1r2YZc5NwDtABSnpFN3SglZC3OCT6vtke30LxDF0N0NMQpLkhxwBGnhY6zx2GI0086B7rDFHdpzssvXPYojnMyAw3JuGVNmGmcqI8hYNpHh9l46kzGfEVOgxkyXh_fS_Lj-7eX2_vq8enu4fbrY-UaUEuFvGOgOivQydYH6X3jBCrVWG8t68AH7w33aJTsjAepHGe2UbxGJQMIV1-Sz4e-ZcnfK-ZFjzG7sr-ZcF6z5i2TvOZMQEHrA-rKPTlh0LsUR5P-agZ671f3-p9fvferD35L6tNxwGpH9P8zb0IL8OUAYDnzT8Sks4s4OfQxFc3az_HdAa9rVI8j</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Hennicke, N.S.</creator><creator>Saemann, M.</creator><creator>Kluess, D.</creator><creator>Bader, R.</creator><creator>Sander, M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1244-6360</orcidid><orcidid>https://orcid.org/0000-0003-1222-272X</orcidid></search><sort><creationdate>202202</creationdate><title>Subject specific finite element modelling of periprosthetic femoral fractures in different load cases</title><author>Hennicke, N.S. ; Saemann, M. ; Kluess, D. ; Bader, R. ; Sander, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e271097b5ec86df8dd4c5e994bdbb170dfdda2dea987ad089c21b4923e98f05c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arthroplasty, Replacement, Hip</topic><topic>Bone tissue</topic><topic>Cementless hip stem</topic><topic>Damage</topic><topic>Element deletion</topic><topic>Femoral Fractures - diagnostic imaging</topic><topic>Femoral Fractures - surgery</topic><topic>Femur - diagnostic imaging</topic><topic>Femur - surgery</topic><topic>Finite Element Analysis</topic><topic>Fracture</topic><topic>Humans</topic><topic>Periprosthetic femoral fracture</topic><topic>Periprosthetic Fractures - diagnostic imaging</topic><topic>Sideways fall</topic><topic>Stumbling</topic><topic>Subject specific modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hennicke, N.S.</creatorcontrib><creatorcontrib>Saemann, M.</creatorcontrib><creatorcontrib>Kluess, D.</creatorcontrib><creatorcontrib>Bader, R.</creatorcontrib><creatorcontrib>Sander, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hennicke, N.S.</au><au>Saemann, M.</au><au>Kluess, D.</au><au>Bader, R.</au><au>Sander, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subject specific finite element modelling of periprosthetic femoral fractures in different load cases</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2022-02</date><risdate>2022</risdate><volume>126</volume><spage>105059</spage><epage>105059</epage><pages>105059-105059</pages><artnum>105059</artnum><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to the anisotropic and complex hierarchical structure of bone, the mechanical behaviour under large strains is difficult to predict. In this study, a state-of-the-art subject specific FE modelling technique for bone is utilised to generate and investigate PFF. A bilinear constitutive law is applied to bone tissue in subject specific FE models of five human femurs which are virtually implanted with a straight hip stem to numerically analyse PFF. The material parameters of the models are expressed as a function of bone ash density and mapped node wise to the FE mesh. In this way the subject specific, heterogeneous structure of bone is mimicked. For material mapping of the parameters, computed tomography (CT) images of the original fresh-frozen femurs are used. Periprosthetic fractures are generated by deleting elements on the basis of a critical plastic strain failure criterion. The models are analysed under physiological and clinically relevant conditions in two different load cases re-enacting stumbling and a sideways fall on the hip. The results of the analyses are quantified with experimental data from previous work. With regard to fracture pattern, stiffness and failure load the simulations of the load case stumbling delivered the most stable and accurate results. In general, mapping of material properties was found to be an appropriate way to reproduce PFF with finite element models. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34995835</pmid><doi>10.1016/j.jmbbm.2021.105059</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1244-6360</orcidid><orcidid>https://orcid.org/0000-0003-1222-272X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2022-02, Vol.126, p.105059-105059, Article 105059
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_2618232150
source ScienceDirect Freedom Collection 2022-2024
subjects Arthroplasty, Replacement, Hip
Bone tissue
Cementless hip stem
Damage
Element deletion
Femoral Fractures - diagnostic imaging
Femoral Fractures - surgery
Femur - diagnostic imaging
Femur - surgery
Finite Element Analysis
Fracture
Humans
Periprosthetic femoral fracture
Periprosthetic Fractures - diagnostic imaging
Sideways fall
Stumbling
Subject specific modelling
title Subject specific finite element modelling of periprosthetic femoral fractures in different load cases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subject%20specific%20finite%20element%20modelling%20of%20periprosthetic%20femoral%20fractures%20in%20different%20load%20cases&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Hennicke,%20N.S.&rft.date=2022-02&rft.volume=126&rft.spage=105059&rft.epage=105059&rft.pages=105059-105059&rft.artnum=105059&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2021.105059&rft_dat=%3Cproquest_cross%3E2618232150%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-e271097b5ec86df8dd4c5e994bdbb170dfdda2dea987ad089c21b4923e98f05c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618232150&rft_id=info:pmid/34995835&rfr_iscdi=true