Loading…

Review of the Mechanism of Nanocarriers and Technological Developments in the Field of Nanoparticles for Applications in Cancer Theragnostics

Cancer cannot be controlled by the usage of drugs alone, and thus, nanotechnology is an important technique that can provide the drug with an impetus to act more effectively. There is adequate availability of anticancer drugs that are classified as alkylating agents, hormones, or antimetabolites. Na...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied bio materials 2021-03, Vol.4 (3), p.2307-2334
Main Authors: Shreyash, Nehil, Sonker, Muskan, Bajpai, Sushant, Tiwary, Saurabh Kr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer cannot be controlled by the usage of drugs alone, and thus, nanotechnology is an important technique that can provide the drug with an impetus to act more effectively. There is adequate availability of anticancer drugs that are classified as alkylating agents, hormones, or antimetabolites. Nanoparticle (NP) carriers increase the residence time of the drug, thereby enhancing the survival rate of the drug, which otherwise gets washed off owing to the small size of the drug particles by the excretory system. For example, for enhancing the circulation, a coating of nonfouling polymers like PEG and dextran is done. Famous drugs such as doxorubicin (DOX) are commonly encapsulated inside the nanocomposite. The various classes of nanoparticles are used to enhance drug delivery by aiding it to fight against the tumor. Targeted therapy aims to attack the cells with features common to the cancer cells while minimizing damage to the normal cell, and these therapies work in one in four ways. Some block the cancer cells from reproducing newer cells, others release toxic substances to kill the cancer cells, some stimulate the immune system to destroy the cancer cells, and some block the growth of more blood vessels around cancer cells, which starve the cells of the nutrients, which is needed for their growth. This review aims to testify the advancements nanotechnology has brought in cancer therapy, and its statements are supported with recent research findings and clinical trial results.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.1c00020