Loading…

Forward Wound Closure with Regenerated Silk Fibroin and Polylysine-Modified Chitosan Composite Bioadhesives as Dressings

Wound dressing has been used for decades to be effective for accelerating skin wound healing. However, practical applications are still limited due to their lower cell affinity, tissue adhesiveness, and biocompatibility. Natural polymers are the important biomaterials because of their excellent biod...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied bio materials 2020-11, Vol.3 (11), p.7941-7951
Main Authors: Wang, Ruofan, Zhu, Jiangying, Jiang, Guohua, Sun, Yanfang, Ruan, Liming, Li, Pengfei, Cui, Haiyan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wound dressing has been used for decades to be effective for accelerating skin wound healing. However, practical applications are still limited due to their lower cell affinity, tissue adhesiveness, and biocompatibility. Natural polymers are the important biomaterials because of their excellent biodegradability, biocompatibility, and low immunogenicity. In this work, the composite bioadhesives (PLS-CS/RSF) were prepared from regenerated silk fibroin (RSF) and polylysine-modified chitosan (PLS-CS) that were cross-linked by Ca2+ ions. The adhesion property tests showed that the PLS-CS/RSF exhibited excellent bonding potentials for various substrates, and the adhesive strength was up to 70 kPa for isolated porcine skin by the extension test. The as-prepared PLS-CS/RSF was nontoxic, displayed obvious antibacterial effects against Staphylococcus aureus and Escherichia coli in vitro, and their bacteriostasis rates were 100% after 120 min treatment. In addition, the PLS-CS/RSF exhibited favorable cytocompatibility by cell counting kit-8 assay. The animal model of wound closure results showed that PLS-CS/RSF can promote wound closure and the integrity of wound healing, inhibiting the secretion of inflammatory factor and tumor necrosis factor and stimulating vascular factor and α-smooth muscle actin to the release of vascular growth factor and promote angiogenesis during the process of wound healing by immunohistochemical assay.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.0c01064