Loading…
Antibacterial PLA Fibers Containing Thiazolium Groups as Wound Dressing Materials
The development of inherent antimicrobial polymeric fibers can contribute to overcoming the increasing problem of infectious diseases and multiresistant microorganisms. Here, we propose the preparation of poly(lactic acid) (PLA) based electrospun fibers blended with poly[2-(4-methylthiazol-5-yl)e...
Saved in:
Published in: | ACS applied bio materials 2019-11, Vol.2 (11), p.4714-4719 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of inherent antimicrobial polymeric fibers can contribute to overcoming the increasing problem of infectious diseases and multiresistant microorganisms. Here, we propose the preparation of poly(lactic acid) (PLA) based electrospun fibers blended with poly[2-(4-methylthiazol-5-yl)ethyl methacrylate] (PMTA), which quaternized have proven broad spectrum antimicrobial activity either in solution or solid state. We have demonstrated that quaternized PLA/PMTA fiber mats have a remarkable antibacterial activity against S. aureus. As determined by scanning electron microscopy and Raman spectroscopy, quaternized PMTA segregates toward the outmost surface of PLA/PMTA fiber leaving the thiazolium group widely available onto the fiber surfaces, facilitating the bacteria killing by contact mode. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.9b00923 |