Loading…
High Phase-Space Density of Laser-Cooled Molecules in an Optical Lattice
We report laser cooling and trapping of yttrium monoxide molecules in an optical lattice. We show that gray molasses cooling remains exceptionally efficient for yttrium monoxide molecules inside the lattice with a molecule temperature as low as 6.1(6) μK. This approach has produced a trapped sample...
Saved in:
Published in: | Physical review letters 2021-12, Vol.127 (26), p.263201-263201, Article 263201 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report laser cooling and trapping of yttrium monoxide molecules in an optical lattice. We show that gray molasses cooling remains exceptionally efficient for yttrium monoxide molecules inside the lattice with a molecule temperature as low as 6.1(6) μK. This approach has produced a trapped sample of 1200 molecules, with a peak spatial density of ∼1.2×10^{10} cm^{-3}, and a peak phase-space density of ∼3.1×10^{-6}. By ramping down the lattice depth, we cool the molecules further to 1.0(2) μK, 20 times colder than previously reported for laser-cooled molecules in a trap. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.263201 |