Loading…
2-adic morphogenesis as a metaphorical model of biological growth
The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the p...
Saved in:
Published in: | BioSystems 2022-02, Vol.212, p.104594-104594, Article 104594 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283 |
container_end_page | 104594 |
container_issue | |
container_start_page | 104594 |
container_title | BioSystems |
container_volume | 212 |
creator | Ignatov, Victor V. |
description | The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways. |
doi_str_mv | 10.1016/j.biosystems.2021.104594 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620087988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264721002331</els_id><sourcerecordid>2620087988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCyhLNil-JI69LBUvqRIbWFuOPWldJXWxU1D_HpcUWDKyNNL1nbn2QSgjeEow4bfrae183MceujilmJIkF6UsTtCYiIrmgtHiFI0xwyynvKhG6CLGNU5VCnKORqzEjDBBx2hGc22dyToftiu_hA1EFzOdTtZBr5MWnNFturfQZr7JUnDrl9_aMvjPfnWJzhrdRrg69gl6e7h_nT_li5fH5_lskRtGZJ8DNhJLQ9P7GmFwWVWGW25IKSvaMMIrK0E3FGpBC4lrzhrOMWaFFWVJOBVsgm6Gvdvg33cQe9W5aKBt9Qb8LirKKcaikuJgFYPVBB9jgEZtg-t02CuC1QGgWqs_gOoAUA0A0-j1MWVXd2B_B3-IJcPdYID01w8HQUXjYGPAugCmV9a7_1O-AHfohYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620087988</pqid></control><display><type>article</type><title>2-adic morphogenesis as a metaphorical model of biological growth</title><source>Elsevier</source><creator>Ignatov, Victor V.</creator><creatorcontrib>Ignatov, Victor V.</creatorcontrib><description>The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2021.104594</identifier><identifier>PMID: 35031382</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Fractal geometry ; Hayflick limit ; Morphogenesis ; p-adic morphology ; p-adic numbers</subject><ispartof>BioSystems, 2022-02, Vol.212, p.104594-104594, Article 104594</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283</cites><orcidid>0000-0003-2357-4173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35031382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignatov, Victor V.</creatorcontrib><title>2-adic morphogenesis as a metaphorical model of biological growth</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways.</description><subject>Fractal geometry</subject><subject>Hayflick limit</subject><subject>Morphogenesis</subject><subject>p-adic morphology</subject><subject>p-adic numbers</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwCyhLNil-JI69LBUvqRIbWFuOPWldJXWxU1D_HpcUWDKyNNL1nbn2QSgjeEow4bfrae183MceujilmJIkF6UsTtCYiIrmgtHiFI0xwyynvKhG6CLGNU5VCnKORqzEjDBBx2hGc22dyToftiu_hA1EFzOdTtZBr5MWnNFturfQZr7JUnDrl9_aMvjPfnWJzhrdRrg69gl6e7h_nT_li5fH5_lskRtGZJ8DNhJLQ9P7GmFwWVWGW25IKSvaMMIrK0E3FGpBC4lrzhrOMWaFFWVJOBVsgm6Gvdvg33cQe9W5aKBt9Qb8LirKKcaikuJgFYPVBB9jgEZtg-t02CuC1QGgWqs_gOoAUA0A0-j1MWVXd2B_B3-IJcPdYID01w8HQUXjYGPAugCmV9a7_1O-AHfohYk</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Ignatov, Victor V.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2357-4173</orcidid></search><sort><creationdate>202202</creationdate><title>2-adic morphogenesis as a metaphorical model of biological growth</title><author>Ignatov, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fractal geometry</topic><topic>Hayflick limit</topic><topic>Morphogenesis</topic><topic>p-adic morphology</topic><topic>p-adic numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignatov, Victor V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatov, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2-adic morphogenesis as a metaphorical model of biological growth</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2022-02</date><risdate>2022</risdate><volume>212</volume><spage>104594</spage><epage>104594</epage><pages>104594-104594</pages><artnum>104594</artnum><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35031382</pmid><doi>10.1016/j.biosystems.2021.104594</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2357-4173</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-2647 |
ispartof | BioSystems, 2022-02, Vol.212, p.104594-104594, Article 104594 |
issn | 0303-2647 1872-8324 |
language | eng |
recordid | cdi_proquest_miscellaneous_2620087988 |
source | Elsevier |
subjects | Fractal geometry Hayflick limit Morphogenesis p-adic morphology p-adic numbers |
title | 2-adic morphogenesis as a metaphorical model of biological growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2-adic%20morphogenesis%20as%20a%20metaphorical%20model%20of%20biological%20growth&rft.jtitle=BioSystems&rft.au=Ignatov,%20Victor%20V.&rft.date=2022-02&rft.volume=212&rft.spage=104594&rft.epage=104594&rft.pages=104594-104594&rft.artnum=104594&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2021.104594&rft_dat=%3Cproquest_cross%3E2620087988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620087988&rft_id=info:pmid/35031382&rfr_iscdi=true |