Loading…

2-adic morphogenesis as a metaphorical model of biological growth

The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the p...

Full description

Saved in:
Bibliographic Details
Published in:BioSystems 2022-02, Vol.212, p.104594-104594, Article 104594
Main Author: Ignatov, Victor V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283
container_end_page 104594
container_issue
container_start_page 104594
container_title BioSystems
container_volume 212
creator Ignatov, Victor V.
description The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways.
doi_str_mv 10.1016/j.biosystems.2021.104594
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620087988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264721002331</els_id><sourcerecordid>2620087988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCyhLNil-JI69LBUvqRIbWFuOPWldJXWxU1D_HpcUWDKyNNL1nbn2QSgjeEow4bfrae183MceujilmJIkF6UsTtCYiIrmgtHiFI0xwyynvKhG6CLGNU5VCnKORqzEjDBBx2hGc22dyToftiu_hA1EFzOdTtZBr5MWnNFturfQZr7JUnDrl9_aMvjPfnWJzhrdRrg69gl6e7h_nT_li5fH5_lskRtGZJ8DNhJLQ9P7GmFwWVWGW25IKSvaMMIrK0E3FGpBC4lrzhrOMWaFFWVJOBVsgm6Gvdvg33cQe9W5aKBt9Qb8LirKKcaikuJgFYPVBB9jgEZtg-t02CuC1QGgWqs_gOoAUA0A0-j1MWVXd2B_B3-IJcPdYID01w8HQUXjYGPAugCmV9a7_1O-AHfohYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620087988</pqid></control><display><type>article</type><title>2-adic morphogenesis as a metaphorical model of biological growth</title><source>Elsevier</source><creator>Ignatov, Victor V.</creator><creatorcontrib>Ignatov, Victor V.</creatorcontrib><description>The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2021.104594</identifier><identifier>PMID: 35031382</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Fractal geometry ; Hayflick limit ; Morphogenesis ; p-adic morphology ; p-adic numbers</subject><ispartof>BioSystems, 2022-02, Vol.212, p.104594-104594, Article 104594</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283</cites><orcidid>0000-0003-2357-4173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35031382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignatov, Victor V.</creatorcontrib><title>2-adic morphogenesis as a metaphorical model of biological growth</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways.</description><subject>Fractal geometry</subject><subject>Hayflick limit</subject><subject>Morphogenesis</subject><subject>p-adic morphology</subject><subject>p-adic numbers</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwCyhLNil-JI69LBUvqRIbWFuOPWldJXWxU1D_HpcUWDKyNNL1nbn2QSgjeEow4bfrae183MceujilmJIkF6UsTtCYiIrmgtHiFI0xwyynvKhG6CLGNU5VCnKORqzEjDBBx2hGc22dyToftiu_hA1EFzOdTtZBr5MWnNFturfQZr7JUnDrl9_aMvjPfnWJzhrdRrg69gl6e7h_nT_li5fH5_lskRtGZJ8DNhJLQ9P7GmFwWVWGW25IKSvaMMIrK0E3FGpBC4lrzhrOMWaFFWVJOBVsgm6Gvdvg33cQe9W5aKBt9Qb8LirKKcaikuJgFYPVBB9jgEZtg-t02CuC1QGgWqs_gOoAUA0A0-j1MWVXd2B_B3-IJcPdYID01w8HQUXjYGPAugCmV9a7_1O-AHfohYk</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Ignatov, Victor V.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2357-4173</orcidid></search><sort><creationdate>202202</creationdate><title>2-adic morphogenesis as a metaphorical model of biological growth</title><author>Ignatov, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fractal geometry</topic><topic>Hayflick limit</topic><topic>Morphogenesis</topic><topic>p-adic morphology</topic><topic>p-adic numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignatov, Victor V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatov, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2-adic morphogenesis as a metaphorical model of biological growth</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2022-02</date><risdate>2022</risdate><volume>212</volume><spage>104594</spage><epage>104594</epage><pages>104594-104594</pages><artnum>104594</artnum><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>The article proposes a mathematical model of morphogenesis which is based on 2-adic arithmetic. In this model, the process of morphogenesis is separated from its genetic coding and genetic control, and is considered abstractly as a transformation of complex biomorphic structures resulting from the process of sequential geometric cell division. The concept of cellular structure is introduced and the analogies that exist between the transformation of organisms and the transformation of the corresponding cellular structures generated by numerical series are considered, in particular, an analogy is drawn between the transformation of series depending on a complex parameter and the growth of biological organisms. The article also introduces some mathematical formalism used to compare different morphological pathways.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35031382</pmid><doi>10.1016/j.biosystems.2021.104594</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2357-4173</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0303-2647
ispartof BioSystems, 2022-02, Vol.212, p.104594-104594, Article 104594
issn 0303-2647
1872-8324
language eng
recordid cdi_proquest_miscellaneous_2620087988
source Elsevier
subjects Fractal geometry
Hayflick limit
Morphogenesis
p-adic morphology
p-adic numbers
title 2-adic morphogenesis as a metaphorical model of biological growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2-adic%20morphogenesis%20as%20a%20metaphorical%20model%20of%20biological%20growth&rft.jtitle=BioSystems&rft.au=Ignatov,%20Victor%20V.&rft.date=2022-02&rft.volume=212&rft.spage=104594&rft.epage=104594&rft.pages=104594-104594&rft.artnum=104594&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2021.104594&rft_dat=%3Cproquest_cross%3E2620087988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e0c909c2187f8c0577c6d6c15972f3167d9eaf2eb82490b63f660034d85516283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620087988&rft_id=info:pmid/35031382&rfr_iscdi=true