Loading…
Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties
Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2022-02, Vol.24 (5), p.3035-3042 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3042 |
container_issue | 5 |
container_start_page | 3035 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Abdelati, Mohamed A Maarouf, Ahmed A Fadlallah, Mohamed M |
description | Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications. |
doi_str_mv | 10.1039/d1cp04191f |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2621018857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624697603</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-fd99ab1284765ac5850f9aebd4a75257027c3d7c8f373bc985998492017a7d173</originalsourceid><addsrcrecordid>eNpdkL1OBCEUhYnRxHW18QlIbCwchQEGsDMb_5JVi9V6wwCzYWVgBKbw7Z1VY2F17zn5cs_JBeAUo0uMiLwyWA-IYom7PTDDtCGVRILu_-28OQRHOW8RQphhMgPvq7HNxZWxuBiUhyWpkN1OwN6WyTBxcGEDXYBPceXqZwr7GKJXnzZdw1zSqMuYlL-A1ltdUgxOQxUM7NUm2DKJIcXBpuJsPgYHnfLZnvzOOXi7u31dPFTLl_vHxc2yGqaWpeqMlKrFtaC8YUozwVAnlW0NVZzVjKOaa2K4Fh3hpNVSMCkFlTXCXHGDOZmD85-7U_THaHNZ9y5r670KNo55XTc1RlgItkPP_qHbOKbpEd8UbSRvECFflmpokg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624697603</pqid></control><display><type>article</type><title>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Abdelati, Mohamed A ; Maarouf, Ahmed A ; Fadlallah, Mohamed M</creator><creatorcontrib>Abdelati, Mohamed A ; Maarouf, Ahmed A ; Fadlallah, Mohamed M</creatorcontrib><description>Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04191f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic radius ; Doping ; Electronegativity ; First principles ; Magnetic properties ; Magnetic semiconductors ; Manganese ; Molybdenum ; Monolayers ; Nickel ; Palladium ; Scandium ; Spin-orbit interactions ; Titanium ; Transition metals ; Work functions ; Yttrium ; Zirconium</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.3035-3042</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdelati, Mohamed A</creatorcontrib><creatorcontrib>Maarouf, Ahmed A</creatorcontrib><creatorcontrib>Fadlallah, Mohamed M</creatorcontrib><title>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</title><title>Physical chemistry chemical physics : PCCP</title><description>Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications.</description><subject>Atomic radius</subject><subject>Doping</subject><subject>Electronegativity</subject><subject>First principles</subject><subject>Magnetic properties</subject><subject>Magnetic semiconductors</subject><subject>Manganese</subject><subject>Molybdenum</subject><subject>Monolayers</subject><subject>Nickel</subject><subject>Palladium</subject><subject>Scandium</subject><subject>Spin-orbit interactions</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Work functions</subject><subject>Yttrium</subject><subject>Zirconium</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OBCEUhYnRxHW18QlIbCwchQEGsDMb_5JVi9V6wwCzYWVgBKbw7Z1VY2F17zn5cs_JBeAUo0uMiLwyWA-IYom7PTDDtCGVRILu_-28OQRHOW8RQphhMgPvq7HNxZWxuBiUhyWpkN1OwN6WyTBxcGEDXYBPceXqZwr7GKJXnzZdw1zSqMuYlL-A1ltdUgxOQxUM7NUm2DKJIcXBpuJsPgYHnfLZnvzOOXi7u31dPFTLl_vHxc2yGqaWpeqMlKrFtaC8YUozwVAnlW0NVZzVjKOaa2K4Fh3hpNVSMCkFlTXCXHGDOZmD85-7U_THaHNZ9y5r670KNo55XTc1RlgItkPP_qHbOKbpEd8UbSRvECFflmpokg</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Abdelati, Mohamed A</creator><creator>Maarouf, Ahmed A</creator><creator>Fadlallah, Mohamed M</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220202</creationdate><title>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</title><author>Abdelati, Mohamed A ; Maarouf, Ahmed A ; Fadlallah, Mohamed M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-fd99ab1284765ac5850f9aebd4a75257027c3d7c8f373bc985998492017a7d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic radius</topic><topic>Doping</topic><topic>Electronegativity</topic><topic>First principles</topic><topic>Magnetic properties</topic><topic>Magnetic semiconductors</topic><topic>Manganese</topic><topic>Molybdenum</topic><topic>Monolayers</topic><topic>Nickel</topic><topic>Palladium</topic><topic>Scandium</topic><topic>Spin-orbit interactions</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Work functions</topic><topic>Yttrium</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelati, Mohamed A</creatorcontrib><creatorcontrib>Maarouf, Ahmed A</creatorcontrib><creatorcontrib>Fadlallah, Mohamed M</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelati, Mohamed A</au><au>Maarouf, Ahmed A</au><au>Fadlallah, Mohamed M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-02-02</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>3035</spage><epage>3042</epage><pages>3035-3042</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp04191f</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.3035-3042 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2621018857 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Atomic radius Doping Electronegativity First principles Magnetic properties Magnetic semiconductors Manganese Molybdenum Monolayers Nickel Palladium Scandium Spin-orbit interactions Titanium Transition metals Work functions Yttrium Zirconium |
title | Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitutional%20transition%20metal%20doping%20in%20MoSi2N4%20monolayer:%20structural,%20electronic%20and%20magnetic%20properties&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Abdelati,%20Mohamed%20A&rft.date=2022-02-02&rft.volume=24&rft.issue=5&rft.spage=3035&rft.epage=3042&rft.pages=3035-3042&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04191f&rft_dat=%3Cproquest%3E2624697603%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p146t-fd99ab1284765ac5850f9aebd4a75257027c3d7c8f373bc985998492017a7d173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624697603&rft_id=info:pmid/&rfr_iscdi=true |