Loading…

Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties

Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2022-02, Vol.24 (5), p.3035-3042
Main Authors: Abdelati, Mohamed A, Maarouf, Ahmed A, Fadlallah, Mohamed M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3042
container_issue 5
container_start_page 3035
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Abdelati, Mohamed A
Maarouf, Ahmed A
Fadlallah, Mohamed M
description Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications.
doi_str_mv 10.1039/d1cp04191f
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2621018857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624697603</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-fd99ab1284765ac5850f9aebd4a75257027c3d7c8f373bc985998492017a7d173</originalsourceid><addsrcrecordid>eNpdkL1OBCEUhYnRxHW18QlIbCwchQEGsDMb_5JVi9V6wwCzYWVgBKbw7Z1VY2F17zn5cs_JBeAUo0uMiLwyWA-IYom7PTDDtCGVRILu_-28OQRHOW8RQphhMgPvq7HNxZWxuBiUhyWpkN1OwN6WyTBxcGEDXYBPceXqZwr7GKJXnzZdw1zSqMuYlL-A1ltdUgxOQxUM7NUm2DKJIcXBpuJsPgYHnfLZnvzOOXi7u31dPFTLl_vHxc2yGqaWpeqMlKrFtaC8YUozwVAnlW0NVZzVjKOaa2K4Fh3hpNVSMCkFlTXCXHGDOZmD85-7U_THaHNZ9y5r670KNo55XTc1RlgItkPP_qHbOKbpEd8UbSRvECFflmpokg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624697603</pqid></control><display><type>article</type><title>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Abdelati, Mohamed A ; Maarouf, Ahmed A ; Fadlallah, Mohamed M</creator><creatorcontrib>Abdelati, Mohamed A ; Maarouf, Ahmed A ; Fadlallah, Mohamed M</creatorcontrib><description>Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04191f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic radius ; Doping ; Electronegativity ; First principles ; Magnetic properties ; Magnetic semiconductors ; Manganese ; Molybdenum ; Monolayers ; Nickel ; Palladium ; Scandium ; Spin-orbit interactions ; Titanium ; Transition metals ; Work functions ; Yttrium ; Zirconium</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.3035-3042</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdelati, Mohamed A</creatorcontrib><creatorcontrib>Maarouf, Ahmed A</creatorcontrib><creatorcontrib>Fadlallah, Mohamed M</creatorcontrib><title>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</title><title>Physical chemistry chemical physics : PCCP</title><description>Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications.</description><subject>Atomic radius</subject><subject>Doping</subject><subject>Electronegativity</subject><subject>First principles</subject><subject>Magnetic properties</subject><subject>Magnetic semiconductors</subject><subject>Manganese</subject><subject>Molybdenum</subject><subject>Monolayers</subject><subject>Nickel</subject><subject>Palladium</subject><subject>Scandium</subject><subject>Spin-orbit interactions</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Work functions</subject><subject>Yttrium</subject><subject>Zirconium</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OBCEUhYnRxHW18QlIbCwchQEGsDMb_5JVi9V6wwCzYWVgBKbw7Z1VY2F17zn5cs_JBeAUo0uMiLwyWA-IYom7PTDDtCGVRILu_-28OQRHOW8RQphhMgPvq7HNxZWxuBiUhyWpkN1OwN6WyTBxcGEDXYBPceXqZwr7GKJXnzZdw1zSqMuYlL-A1ltdUgxOQxUM7NUm2DKJIcXBpuJsPgYHnfLZnvzOOXi7u31dPFTLl_vHxc2yGqaWpeqMlKrFtaC8YUozwVAnlW0NVZzVjKOaa2K4Fh3hpNVSMCkFlTXCXHGDOZmD85-7U_THaHNZ9y5r670KNo55XTc1RlgItkPP_qHbOKbpEd8UbSRvECFflmpokg</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Abdelati, Mohamed A</creator><creator>Maarouf, Ahmed A</creator><creator>Fadlallah, Mohamed M</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220202</creationdate><title>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</title><author>Abdelati, Mohamed A ; Maarouf, Ahmed A ; Fadlallah, Mohamed M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-fd99ab1284765ac5850f9aebd4a75257027c3d7c8f373bc985998492017a7d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic radius</topic><topic>Doping</topic><topic>Electronegativity</topic><topic>First principles</topic><topic>Magnetic properties</topic><topic>Magnetic semiconductors</topic><topic>Manganese</topic><topic>Molybdenum</topic><topic>Monolayers</topic><topic>Nickel</topic><topic>Palladium</topic><topic>Scandium</topic><topic>Spin-orbit interactions</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Work functions</topic><topic>Yttrium</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelati, Mohamed A</creatorcontrib><creatorcontrib>Maarouf, Ahmed A</creatorcontrib><creatorcontrib>Fadlallah, Mohamed M</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelati, Mohamed A</au><au>Maarouf, Ahmed A</au><au>Fadlallah, Mohamed M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-02-02</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>3035</spage><epage>3042</epage><pages>3035-3042</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Monolayer MoSi2N4 (MoSiN) was successfully synthesized last year [Hong et al., Science369, 670 (2020)]. The MoSiN monolayer exhibited semiconducting characteristics and exceptional ambient stability, calling for more studies of its properties. Here, we conduct first-principle calculations to examine the structural, magnetic, and electronic properties of substitutional doping of MoSiN monolayers with transition metals (TM) at the Mo site (TM–MoSiN). We find that the Sc-, Y-, Ti-, and Zr–MoSiN are metallic systems, while Mn-, Tc-, and Ru–MoSiN are n-type conducting. The Fe–MoSiN is a dilute magnetic semiconductor, and the Ni–MoSiN is a metal (or half-metal). The inclusion of spin–orbit coupling turns them into a half-metal and a semimetal, respectively. We also find that the work function of TM–MoSiN and the bond lengths between the TM and neighbor atoms increase as the atomic radius and electronegativity of the TM atom increase, respectively. The Fe-, Co-, and Ni–MoSiN may be used in spintronic devices, while Mn-, Rh- and Pd–MoSiN could be utilized for spin filter applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp04191f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.3035-3042
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2621018857
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Atomic radius
Doping
Electronegativity
First principles
Magnetic properties
Magnetic semiconductors
Manganese
Molybdenum
Monolayers
Nickel
Palladium
Scandium
Spin-orbit interactions
Titanium
Transition metals
Work functions
Yttrium
Zirconium
title Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitutional%20transition%20metal%20doping%20in%20MoSi2N4%20monolayer:%20structural,%20electronic%20and%20magnetic%20properties&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Abdelati,%20Mohamed%20A&rft.date=2022-02-02&rft.volume=24&rft.issue=5&rft.spage=3035&rft.epage=3042&rft.pages=3035-3042&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04191f&rft_dat=%3Cproquest%3E2624697603%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p146t-fd99ab1284765ac5850f9aebd4a75257027c3d7c8f373bc985998492017a7d173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624697603&rft_id=info:pmid/&rfr_iscdi=true