Loading…

A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia

We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy. Pretraining model was used to fine-tune the model para...

Full description

Saved in:
Bibliographic Details
Published in:Digestive and liver disease 2022-09, Vol.54 (9), p.1202-1208
Main Authors: Meng, Sijun, Zheng, Yueping, Wang, Wangyue, Su, Ruizhang, Zhang, Yu, Zhang, Yi, Guo, Bingting, Han, Zhaofang, Zhang, Wen, Qin, Wenjuan, Jiang, Zhenghua, Xu, Haineng, Bu, Yemei, Zhong, Yuhuan, He, Yulong, Qiu, Hesong, Xu, Wen, Chen, Hong, Wu, Siqi, Zhang, Yongxiu, Dong, Chao, Hu, Yongchao, Xie, Lizhong, Li, Xugong, Zhang, Changhua, Pan, Wensheng, Wu, Shuisheng, Hu, Yiqun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3
cites cdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3
container_end_page 1208
container_issue 9
container_start_page 1202
container_title Digestive and liver disease
container_volume 54
creator Meng, Sijun
Zheng, Yueping
Wang, Wangyue
Su, Ruizhang
Zhang, Yu
Zhang, Yi
Guo, Bingting
Han, Zhaofang
Zhang, Wen
Qin, Wenjuan
Jiang, Zhenghua
Xu, Haineng
Bu, Yemei
Zhong, Yuhuan
He, Yulong
Qiu, Hesong
Xu, Wen
Chen, Hong
Wu, Siqi
Zhang, Yongxiu
Dong, Chao
Hu, Yongchao
Xie, Lizhong
Li, Xugong
Zhang, Changhua
Pan, Wensheng
Wu, Shuisheng
Hu, Yiqun
description We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy. Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists. The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P 
doi_str_mv 10.1016/j.dld.2021.12.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2621656623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1590865821009257</els_id><sourcerecordid>2621656623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</originalsourceid><addsrcrecordid>eNp9kM1u3CAYRVGVqEmnfYBuKpbZ2OXHMLa6iqIkrRSpm2aNMHweM7LBBZxotn3yMJo0y6yAq3OvxEHoKyU1JVR-39d2sjUjjNaU1SX5gC5pu20rLiQ7K3fRkaqVor1An1LakwJKQT6iCy5IIzpBL9G_a2zCvKwZYqWdBYut0zsfkks4HVKGGa_J-R1-Hl2GanK7MWPwNiQTlgMeQsR5BLxEsM5kFzwOQ1n0T-CPLz1hbcGHWeNnl0c8lj7exZJhe0jLpJPTn9H5oKcEX17PDXq8u_1z87N6-H3_6-b6oTJc8Fy11EppaM819EPTa9txQ2jXM9PRod9CLyShjHXAWUeEafqGMNIQ3pJBawYD36Cr0-4Sw98VUlazSwamSXsIa1JMHvVIyXhB6Qk1MaQUYVBLdLOOB0WJOqpXe1XUq6N6RZkqSel8e51f-xnsW-O_6wL8OAFQPvnkIKpkHHhTzEUwWdng3pl_Ab4Olrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621656623</pqid></control><display><type>article</type><title>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</title><source>ScienceDirect Journals</source><creator>Meng, Sijun ; Zheng, Yueping ; Wang, Wangyue ; Su, Ruizhang ; Zhang, Yu ; Zhang, Yi ; Guo, Bingting ; Han, Zhaofang ; Zhang, Wen ; Qin, Wenjuan ; Jiang, Zhenghua ; Xu, Haineng ; Bu, Yemei ; Zhong, Yuhuan ; He, Yulong ; Qiu, Hesong ; Xu, Wen ; Chen, Hong ; Wu, Siqi ; Zhang, Yongxiu ; Dong, Chao ; Hu, Yongchao ; Xie, Lizhong ; Li, Xugong ; Zhang, Changhua ; Pan, Wensheng ; Wu, Shuisheng ; Hu, Yiqun</creator><creatorcontrib>Meng, Sijun ; Zheng, Yueping ; Wang, Wangyue ; Su, Ruizhang ; Zhang, Yu ; Zhang, Yi ; Guo, Bingting ; Han, Zhaofang ; Zhang, Wen ; Qin, Wenjuan ; Jiang, Zhenghua ; Xu, Haineng ; Bu, Yemei ; Zhong, Yuhuan ; He, Yulong ; Qiu, Hesong ; Xu, Wen ; Chen, Hong ; Wu, Siqi ; Zhang, Yongxiu ; Dong, Chao ; Hu, Yongchao ; Xie, Lizhong ; Li, Xugong ; Zhang, Changhua ; Pan, Wensheng ; Wu, Shuisheng ; Hu, Yiqun</creatorcontrib><description>We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy. Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists. The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P &lt; 0.0001). ECRCCAD had good diagnostic capability for HGD and enabled a more convenient and accurate diagnosis using WLE.</description><identifier>ISSN: 1590-8658</identifier><identifier>EISSN: 1878-3562</identifier><identifier>DOI: 10.1016/j.dld.2021.12.016</identifier><identifier>PMID: 35045951</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adenoma - diagnosis ; Artificial intelligence ; Colonoscopy ; Colorectal cancer ; Computer-aided diagnosis system ; Computers ; Endoscopy ; High grade dysplasia ; Humans ; Hyperplasia ; Image Processing, Computer-Assisted ; Retrospective Studies ; White light endoscopy</subject><ispartof>Digestive and liver disease, 2022-09, Vol.54 (9), p.1202-1208</ispartof><rights>2022 Editrice Gastroenterologica Italiana S.r.l.</rights><rights>Copyright © 2022 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</citedby><cites>FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35045951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Sijun</creatorcontrib><creatorcontrib>Zheng, Yueping</creatorcontrib><creatorcontrib>Wang, Wangyue</creatorcontrib><creatorcontrib>Su, Ruizhang</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Guo, Bingting</creatorcontrib><creatorcontrib>Han, Zhaofang</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Qin, Wenjuan</creatorcontrib><creatorcontrib>Jiang, Zhenghua</creatorcontrib><creatorcontrib>Xu, Haineng</creatorcontrib><creatorcontrib>Bu, Yemei</creatorcontrib><creatorcontrib>Zhong, Yuhuan</creatorcontrib><creatorcontrib>He, Yulong</creatorcontrib><creatorcontrib>Qiu, Hesong</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Wu, Siqi</creatorcontrib><creatorcontrib>Zhang, Yongxiu</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Hu, Yongchao</creatorcontrib><creatorcontrib>Xie, Lizhong</creatorcontrib><creatorcontrib>Li, Xugong</creatorcontrib><creatorcontrib>Zhang, Changhua</creatorcontrib><creatorcontrib>Pan, Wensheng</creatorcontrib><creatorcontrib>Wu, Shuisheng</creatorcontrib><creatorcontrib>Hu, Yiqun</creatorcontrib><title>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</title><title>Digestive and liver disease</title><addtitle>Dig Liver Dis</addtitle><description>We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy. Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists. The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P &lt; 0.0001). ECRCCAD had good diagnostic capability for HGD and enabled a more convenient and accurate diagnosis using WLE.</description><subject>Adenoma - diagnosis</subject><subject>Artificial intelligence</subject><subject>Colonoscopy</subject><subject>Colorectal cancer</subject><subject>Computer-aided diagnosis system</subject><subject>Computers</subject><subject>Endoscopy</subject><subject>High grade dysplasia</subject><subject>Humans</subject><subject>Hyperplasia</subject><subject>Image Processing, Computer-Assisted</subject><subject>Retrospective Studies</subject><subject>White light endoscopy</subject><issn>1590-8658</issn><issn>1878-3562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u3CAYRVGVqEmnfYBuKpbZ2OXHMLa6iqIkrRSpm2aNMHweM7LBBZxotn3yMJo0y6yAq3OvxEHoKyU1JVR-39d2sjUjjNaU1SX5gC5pu20rLiQ7K3fRkaqVor1An1LakwJKQT6iCy5IIzpBL9G_a2zCvKwZYqWdBYut0zsfkks4HVKGGa_J-R1-Hl2GanK7MWPwNiQTlgMeQsR5BLxEsM5kFzwOQ1n0T-CPLz1hbcGHWeNnl0c8lj7exZJhe0jLpJPTn9H5oKcEX17PDXq8u_1z87N6-H3_6-b6oTJc8Fy11EppaM819EPTa9txQ2jXM9PRod9CLyShjHXAWUeEafqGMNIQ3pJBawYD36Cr0-4Sw98VUlazSwamSXsIa1JMHvVIyXhB6Qk1MaQUYVBLdLOOB0WJOqpXe1XUq6N6RZkqSel8e51f-xnsW-O_6wL8OAFQPvnkIKpkHHhTzEUwWdng3pl_Ab4Olrk</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Meng, Sijun</creator><creator>Zheng, Yueping</creator><creator>Wang, Wangyue</creator><creator>Su, Ruizhang</creator><creator>Zhang, Yu</creator><creator>Zhang, Yi</creator><creator>Guo, Bingting</creator><creator>Han, Zhaofang</creator><creator>Zhang, Wen</creator><creator>Qin, Wenjuan</creator><creator>Jiang, Zhenghua</creator><creator>Xu, Haineng</creator><creator>Bu, Yemei</creator><creator>Zhong, Yuhuan</creator><creator>He, Yulong</creator><creator>Qiu, Hesong</creator><creator>Xu, Wen</creator><creator>Chen, Hong</creator><creator>Wu, Siqi</creator><creator>Zhang, Yongxiu</creator><creator>Dong, Chao</creator><creator>Hu, Yongchao</creator><creator>Xie, Lizhong</creator><creator>Li, Xugong</creator><creator>Zhang, Changhua</creator><creator>Pan, Wensheng</creator><creator>Wu, Shuisheng</creator><creator>Hu, Yiqun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202209</creationdate><title>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</title><author>Meng, Sijun ; Zheng, Yueping ; Wang, Wangyue ; Su, Ruizhang ; Zhang, Yu ; Zhang, Yi ; Guo, Bingting ; Han, Zhaofang ; Zhang, Wen ; Qin, Wenjuan ; Jiang, Zhenghua ; Xu, Haineng ; Bu, Yemei ; Zhong, Yuhuan ; He, Yulong ; Qiu, Hesong ; Xu, Wen ; Chen, Hong ; Wu, Siqi ; Zhang, Yongxiu ; Dong, Chao ; Hu, Yongchao ; Xie, Lizhong ; Li, Xugong ; Zhang, Changhua ; Pan, Wensheng ; Wu, Shuisheng ; Hu, Yiqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenoma - diagnosis</topic><topic>Artificial intelligence</topic><topic>Colonoscopy</topic><topic>Colorectal cancer</topic><topic>Computer-aided diagnosis system</topic><topic>Computers</topic><topic>Endoscopy</topic><topic>High grade dysplasia</topic><topic>Humans</topic><topic>Hyperplasia</topic><topic>Image Processing, Computer-Assisted</topic><topic>Retrospective Studies</topic><topic>White light endoscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Sijun</creatorcontrib><creatorcontrib>Zheng, Yueping</creatorcontrib><creatorcontrib>Wang, Wangyue</creatorcontrib><creatorcontrib>Su, Ruizhang</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Guo, Bingting</creatorcontrib><creatorcontrib>Han, Zhaofang</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Qin, Wenjuan</creatorcontrib><creatorcontrib>Jiang, Zhenghua</creatorcontrib><creatorcontrib>Xu, Haineng</creatorcontrib><creatorcontrib>Bu, Yemei</creatorcontrib><creatorcontrib>Zhong, Yuhuan</creatorcontrib><creatorcontrib>He, Yulong</creatorcontrib><creatorcontrib>Qiu, Hesong</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Wu, Siqi</creatorcontrib><creatorcontrib>Zhang, Yongxiu</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Hu, Yongchao</creatorcontrib><creatorcontrib>Xie, Lizhong</creatorcontrib><creatorcontrib>Li, Xugong</creatorcontrib><creatorcontrib>Zhang, Changhua</creatorcontrib><creatorcontrib>Pan, Wensheng</creatorcontrib><creatorcontrib>Wu, Shuisheng</creatorcontrib><creatorcontrib>Hu, Yiqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Digestive and liver disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Sijun</au><au>Zheng, Yueping</au><au>Wang, Wangyue</au><au>Su, Ruizhang</au><au>Zhang, Yu</au><au>Zhang, Yi</au><au>Guo, Bingting</au><au>Han, Zhaofang</au><au>Zhang, Wen</au><au>Qin, Wenjuan</au><au>Jiang, Zhenghua</au><au>Xu, Haineng</au><au>Bu, Yemei</au><au>Zhong, Yuhuan</au><au>He, Yulong</au><au>Qiu, Hesong</au><au>Xu, Wen</au><au>Chen, Hong</au><au>Wu, Siqi</au><au>Zhang, Yongxiu</au><au>Dong, Chao</au><au>Hu, Yongchao</au><au>Xie, Lizhong</au><au>Li, Xugong</au><au>Zhang, Changhua</au><au>Pan, Wensheng</au><au>Wu, Shuisheng</au><au>Hu, Yiqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</atitle><jtitle>Digestive and liver disease</jtitle><addtitle>Dig Liver Dis</addtitle><date>2022-09</date><risdate>2022</risdate><volume>54</volume><issue>9</issue><spage>1202</spage><epage>1208</epage><pages>1202-1208</pages><issn>1590-8658</issn><eissn>1878-3562</eissn><abstract>We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy. Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists. The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P &lt; 0.0001). ECRCCAD had good diagnostic capability for HGD and enabled a more convenient and accurate diagnosis using WLE.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>35045951</pmid><doi>10.1016/j.dld.2021.12.016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1590-8658
ispartof Digestive and liver disease, 2022-09, Vol.54 (9), p.1202-1208
issn 1590-8658
1878-3562
language eng
recordid cdi_proquest_miscellaneous_2621656623
source ScienceDirect Journals
subjects Adenoma - diagnosis
Artificial intelligence
Colonoscopy
Colorectal cancer
Computer-aided diagnosis system
Computers
Endoscopy
High grade dysplasia
Humans
Hyperplasia
Image Processing, Computer-Assisted
Retrospective Studies
White light endoscopy
title A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computer-aided%20diagnosis%20system%20using%20white-light%20endoscopy%20for%20the%20prediction%20of%20conventional%20adenoma%20with%20high%20grade%20dysplasia&rft.jtitle=Digestive%20and%20liver%20disease&rft.au=Meng,%20Sijun&rft.date=2022-09&rft.volume=54&rft.issue=9&rft.spage=1202&rft.epage=1208&rft.pages=1202-1208&rft.issn=1590-8658&rft.eissn=1878-3562&rft_id=info:doi/10.1016/j.dld.2021.12.016&rft_dat=%3Cproquest_cross%3E2621656623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621656623&rft_id=info:pmid/35045951&rfr_iscdi=true