Loading…
A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia
We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy. Pretraining model was used to fine-tune the model para...
Saved in:
Published in: | Digestive and liver disease 2022-09, Vol.54 (9), p.1202-1208 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3 |
container_end_page | 1208 |
container_issue | 9 |
container_start_page | 1202 |
container_title | Digestive and liver disease |
container_volume | 54 |
creator | Meng, Sijun Zheng, Yueping Wang, Wangyue Su, Ruizhang Zhang, Yu Zhang, Yi Guo, Bingting Han, Zhaofang Zhang, Wen Qin, Wenjuan Jiang, Zhenghua Xu, Haineng Bu, Yemei Zhong, Yuhuan He, Yulong Qiu, Hesong Xu, Wen Chen, Hong Wu, Siqi Zhang, Yongxiu Dong, Chao Hu, Yongchao Xie, Lizhong Li, Xugong Zhang, Changhua Pan, Wensheng Wu, Shuisheng Hu, Yiqun |
description | We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy.
Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists.
The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P |
doi_str_mv | 10.1016/j.dld.2021.12.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2621656623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1590865821009257</els_id><sourcerecordid>2621656623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</originalsourceid><addsrcrecordid>eNp9kM1u3CAYRVGVqEmnfYBuKpbZ2OXHMLa6iqIkrRSpm2aNMHweM7LBBZxotn3yMJo0y6yAq3OvxEHoKyU1JVR-39d2sjUjjNaU1SX5gC5pu20rLiQ7K3fRkaqVor1An1LakwJKQT6iCy5IIzpBL9G_a2zCvKwZYqWdBYut0zsfkks4HVKGGa_J-R1-Hl2GanK7MWPwNiQTlgMeQsR5BLxEsM5kFzwOQ1n0T-CPLz1hbcGHWeNnl0c8lj7exZJhe0jLpJPTn9H5oKcEX17PDXq8u_1z87N6-H3_6-b6oTJc8Fy11EppaM819EPTa9txQ2jXM9PRod9CLyShjHXAWUeEafqGMNIQ3pJBawYD36Cr0-4Sw98VUlazSwamSXsIa1JMHvVIyXhB6Qk1MaQUYVBLdLOOB0WJOqpXe1XUq6N6RZkqSel8e51f-xnsW-O_6wL8OAFQPvnkIKpkHHhTzEUwWdng3pl_Ab4Olrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621656623</pqid></control><display><type>article</type><title>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</title><source>ScienceDirect Journals</source><creator>Meng, Sijun ; Zheng, Yueping ; Wang, Wangyue ; Su, Ruizhang ; Zhang, Yu ; Zhang, Yi ; Guo, Bingting ; Han, Zhaofang ; Zhang, Wen ; Qin, Wenjuan ; Jiang, Zhenghua ; Xu, Haineng ; Bu, Yemei ; Zhong, Yuhuan ; He, Yulong ; Qiu, Hesong ; Xu, Wen ; Chen, Hong ; Wu, Siqi ; Zhang, Yongxiu ; Dong, Chao ; Hu, Yongchao ; Xie, Lizhong ; Li, Xugong ; Zhang, Changhua ; Pan, Wensheng ; Wu, Shuisheng ; Hu, Yiqun</creator><creatorcontrib>Meng, Sijun ; Zheng, Yueping ; Wang, Wangyue ; Su, Ruizhang ; Zhang, Yu ; Zhang, Yi ; Guo, Bingting ; Han, Zhaofang ; Zhang, Wen ; Qin, Wenjuan ; Jiang, Zhenghua ; Xu, Haineng ; Bu, Yemei ; Zhong, Yuhuan ; He, Yulong ; Qiu, Hesong ; Xu, Wen ; Chen, Hong ; Wu, Siqi ; Zhang, Yongxiu ; Dong, Chao ; Hu, Yongchao ; Xie, Lizhong ; Li, Xugong ; Zhang, Changhua ; Pan, Wensheng ; Wu, Shuisheng ; Hu, Yiqun</creatorcontrib><description>We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy.
Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists.
The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P < 0.0001).
ECRCCAD had good diagnostic capability for HGD and enabled a more convenient and accurate diagnosis using WLE.</description><identifier>ISSN: 1590-8658</identifier><identifier>EISSN: 1878-3562</identifier><identifier>DOI: 10.1016/j.dld.2021.12.016</identifier><identifier>PMID: 35045951</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adenoma - diagnosis ; Artificial intelligence ; Colonoscopy ; Colorectal cancer ; Computer-aided diagnosis system ; Computers ; Endoscopy ; High grade dysplasia ; Humans ; Hyperplasia ; Image Processing, Computer-Assisted ; Retrospective Studies ; White light endoscopy</subject><ispartof>Digestive and liver disease, 2022-09, Vol.54 (9), p.1202-1208</ispartof><rights>2022 Editrice Gastroenterologica Italiana S.r.l.</rights><rights>Copyright © 2022 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</citedby><cites>FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35045951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Sijun</creatorcontrib><creatorcontrib>Zheng, Yueping</creatorcontrib><creatorcontrib>Wang, Wangyue</creatorcontrib><creatorcontrib>Su, Ruizhang</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Guo, Bingting</creatorcontrib><creatorcontrib>Han, Zhaofang</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Qin, Wenjuan</creatorcontrib><creatorcontrib>Jiang, Zhenghua</creatorcontrib><creatorcontrib>Xu, Haineng</creatorcontrib><creatorcontrib>Bu, Yemei</creatorcontrib><creatorcontrib>Zhong, Yuhuan</creatorcontrib><creatorcontrib>He, Yulong</creatorcontrib><creatorcontrib>Qiu, Hesong</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Wu, Siqi</creatorcontrib><creatorcontrib>Zhang, Yongxiu</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Hu, Yongchao</creatorcontrib><creatorcontrib>Xie, Lizhong</creatorcontrib><creatorcontrib>Li, Xugong</creatorcontrib><creatorcontrib>Zhang, Changhua</creatorcontrib><creatorcontrib>Pan, Wensheng</creatorcontrib><creatorcontrib>Wu, Shuisheng</creatorcontrib><creatorcontrib>Hu, Yiqun</creatorcontrib><title>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</title><title>Digestive and liver disease</title><addtitle>Dig Liver Dis</addtitle><description>We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy.
Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists.
The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P < 0.0001).
ECRCCAD had good diagnostic capability for HGD and enabled a more convenient and accurate diagnosis using WLE.</description><subject>Adenoma - diagnosis</subject><subject>Artificial intelligence</subject><subject>Colonoscopy</subject><subject>Colorectal cancer</subject><subject>Computer-aided diagnosis system</subject><subject>Computers</subject><subject>Endoscopy</subject><subject>High grade dysplasia</subject><subject>Humans</subject><subject>Hyperplasia</subject><subject>Image Processing, Computer-Assisted</subject><subject>Retrospective Studies</subject><subject>White light endoscopy</subject><issn>1590-8658</issn><issn>1878-3562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u3CAYRVGVqEmnfYBuKpbZ2OXHMLa6iqIkrRSpm2aNMHweM7LBBZxotn3yMJo0y6yAq3OvxEHoKyU1JVR-39d2sjUjjNaU1SX5gC5pu20rLiQ7K3fRkaqVor1An1LakwJKQT6iCy5IIzpBL9G_a2zCvKwZYqWdBYut0zsfkks4HVKGGa_J-R1-Hl2GanK7MWPwNiQTlgMeQsR5BLxEsM5kFzwOQ1n0T-CPLz1hbcGHWeNnl0c8lj7exZJhe0jLpJPTn9H5oKcEX17PDXq8u_1z87N6-H3_6-b6oTJc8Fy11EppaM819EPTa9txQ2jXM9PRod9CLyShjHXAWUeEafqGMNIQ3pJBawYD36Cr0-4Sw98VUlazSwamSXsIa1JMHvVIyXhB6Qk1MaQUYVBLdLOOB0WJOqpXe1XUq6N6RZkqSel8e51f-xnsW-O_6wL8OAFQPvnkIKpkHHhTzEUwWdng3pl_Ab4Olrk</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Meng, Sijun</creator><creator>Zheng, Yueping</creator><creator>Wang, Wangyue</creator><creator>Su, Ruizhang</creator><creator>Zhang, Yu</creator><creator>Zhang, Yi</creator><creator>Guo, Bingting</creator><creator>Han, Zhaofang</creator><creator>Zhang, Wen</creator><creator>Qin, Wenjuan</creator><creator>Jiang, Zhenghua</creator><creator>Xu, Haineng</creator><creator>Bu, Yemei</creator><creator>Zhong, Yuhuan</creator><creator>He, Yulong</creator><creator>Qiu, Hesong</creator><creator>Xu, Wen</creator><creator>Chen, Hong</creator><creator>Wu, Siqi</creator><creator>Zhang, Yongxiu</creator><creator>Dong, Chao</creator><creator>Hu, Yongchao</creator><creator>Xie, Lizhong</creator><creator>Li, Xugong</creator><creator>Zhang, Changhua</creator><creator>Pan, Wensheng</creator><creator>Wu, Shuisheng</creator><creator>Hu, Yiqun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202209</creationdate><title>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</title><author>Meng, Sijun ; Zheng, Yueping ; Wang, Wangyue ; Su, Ruizhang ; Zhang, Yu ; Zhang, Yi ; Guo, Bingting ; Han, Zhaofang ; Zhang, Wen ; Qin, Wenjuan ; Jiang, Zhenghua ; Xu, Haineng ; Bu, Yemei ; Zhong, Yuhuan ; He, Yulong ; Qiu, Hesong ; Xu, Wen ; Chen, Hong ; Wu, Siqi ; Zhang, Yongxiu ; Dong, Chao ; Hu, Yongchao ; Xie, Lizhong ; Li, Xugong ; Zhang, Changhua ; Pan, Wensheng ; Wu, Shuisheng ; Hu, Yiqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenoma - diagnosis</topic><topic>Artificial intelligence</topic><topic>Colonoscopy</topic><topic>Colorectal cancer</topic><topic>Computer-aided diagnosis system</topic><topic>Computers</topic><topic>Endoscopy</topic><topic>High grade dysplasia</topic><topic>Humans</topic><topic>Hyperplasia</topic><topic>Image Processing, Computer-Assisted</topic><topic>Retrospective Studies</topic><topic>White light endoscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Sijun</creatorcontrib><creatorcontrib>Zheng, Yueping</creatorcontrib><creatorcontrib>Wang, Wangyue</creatorcontrib><creatorcontrib>Su, Ruizhang</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Guo, Bingting</creatorcontrib><creatorcontrib>Han, Zhaofang</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Qin, Wenjuan</creatorcontrib><creatorcontrib>Jiang, Zhenghua</creatorcontrib><creatorcontrib>Xu, Haineng</creatorcontrib><creatorcontrib>Bu, Yemei</creatorcontrib><creatorcontrib>Zhong, Yuhuan</creatorcontrib><creatorcontrib>He, Yulong</creatorcontrib><creatorcontrib>Qiu, Hesong</creatorcontrib><creatorcontrib>Xu, Wen</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Wu, Siqi</creatorcontrib><creatorcontrib>Zhang, Yongxiu</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Hu, Yongchao</creatorcontrib><creatorcontrib>Xie, Lizhong</creatorcontrib><creatorcontrib>Li, Xugong</creatorcontrib><creatorcontrib>Zhang, Changhua</creatorcontrib><creatorcontrib>Pan, Wensheng</creatorcontrib><creatorcontrib>Wu, Shuisheng</creatorcontrib><creatorcontrib>Hu, Yiqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Digestive and liver disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Sijun</au><au>Zheng, Yueping</au><au>Wang, Wangyue</au><au>Su, Ruizhang</au><au>Zhang, Yu</au><au>Zhang, Yi</au><au>Guo, Bingting</au><au>Han, Zhaofang</au><au>Zhang, Wen</au><au>Qin, Wenjuan</au><au>Jiang, Zhenghua</au><au>Xu, Haineng</au><au>Bu, Yemei</au><au>Zhong, Yuhuan</au><au>He, Yulong</au><au>Qiu, Hesong</au><au>Xu, Wen</au><au>Chen, Hong</au><au>Wu, Siqi</au><au>Zhang, Yongxiu</au><au>Dong, Chao</au><au>Hu, Yongchao</au><au>Xie, Lizhong</au><au>Li, Xugong</au><au>Zhang, Changhua</au><au>Pan, Wensheng</au><au>Wu, Shuisheng</au><au>Hu, Yiqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia</atitle><jtitle>Digestive and liver disease</jtitle><addtitle>Dig Liver Dis</addtitle><date>2022-09</date><risdate>2022</risdate><volume>54</volume><issue>9</issue><spage>1202</spage><epage>1208</epage><pages>1202-1208</pages><issn>1590-8658</issn><eissn>1878-3562</eissn><abstract>We developed a computer-aided diagnosis system called ECRCCAD using standard white-light endoscopy (WLE) for predicting conventional adenomas with high-grade dysplasia (HGD) to optimise the patients' management decisions during colonoscopy.
Pretraining model was used to fine-tune the model parameters by transfer learning. 2,397 images of HGD and 2,487 low-grade dysplasia (LGD) images were randomly assigned (8:1:1) to the training, optimising, and internal validation dataset. The prospective validation dataset is the frames accessed from colonoscope videoes. One independent rural hospital provided an external validation dataset. Histopathological diagnosis was used as the standard criterion. The capability of the ECRCCAD to distinguish HGD was assessed and compared with two expert endoscopists.
The accuracy, sensitivity and specificity for diagnosis of HGD in the internal validation set were 90.5%, 93.2%, 87.9%, respectively. While 88.2%, 85.4%, 89.8%, respectively, for the external validation set. For the prospective validation set, ECRCCAD achieved an AUC of 93.5% in diagnosing HGD. The performance of ECRCCAD in diagnosing HGD was better than that of the expert endoscopist in the external validation set (88.2% vs. 71.5%, P < 0.0001).
ECRCCAD had good diagnostic capability for HGD and enabled a more convenient and accurate diagnosis using WLE.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>35045951</pmid><doi>10.1016/j.dld.2021.12.016</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1590-8658 |
ispartof | Digestive and liver disease, 2022-09, Vol.54 (9), p.1202-1208 |
issn | 1590-8658 1878-3562 |
language | eng |
recordid | cdi_proquest_miscellaneous_2621656623 |
source | ScienceDirect Journals |
subjects | Adenoma - diagnosis Artificial intelligence Colonoscopy Colorectal cancer Computer-aided diagnosis system Computers Endoscopy High grade dysplasia Humans Hyperplasia Image Processing, Computer-Assisted Retrospective Studies White light endoscopy |
title | A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computer-aided%20diagnosis%20system%20using%20white-light%20endoscopy%20for%20the%20prediction%20of%20conventional%20adenoma%20with%20high%20grade%20dysplasia&rft.jtitle=Digestive%20and%20liver%20disease&rft.au=Meng,%20Sijun&rft.date=2022-09&rft.volume=54&rft.issue=9&rft.spage=1202&rft.epage=1208&rft.pages=1202-1208&rft.issn=1590-8658&rft.eissn=1878-3562&rft_id=info:doi/10.1016/j.dld.2021.12.016&rft_dat=%3Cproquest_cross%3E2621656623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-81d66c1b3aebf4bad93c019b2c91fb7eb5601229e32905c4b402040380faa2ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621656623&rft_id=info:pmid/35045951&rfr_iscdi=true |