Loading…

Bimodal Tactile Sensor without Signal Fusion for User-Interactive Applications

Tactile sensors with multimode sensing ability are cornerstones of artificial skin for applications in humanoid robotics and smart prosthetics. However, the intuitive and interference-free reading of multiple tactile signals without involving complex algorithms and calculations remains a challenge....

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2022-02, Vol.16 (2), p.2789-2797
Main Authors: Ma, Xiaole, Wang, Chunfeng, Wei, Ruilai, He, Jiaqi, Li, Jing, Liu, Xianhu, Huang, Fengchang, Ge, Shuaipeng, Tao, Juan, Yuan, Zuqing, Chen, Ping, Peng, Dengfeng, Pan, Caofeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tactile sensors with multimode sensing ability are cornerstones of artificial skin for applications in humanoid robotics and smart prosthetics. However, the intuitive and interference-free reading of multiple tactile signals without involving complex algorithms and calculations remains a challenge. Herein a pressure–temperature bimodal tactile sensor without any interference is demonstrated by combining the fundamentally different sensing mechanisms of optics and electronics, enabling the simultaneous and independent sensing of pressure and temperature with the elimination of signal separation algorithms and calculations. The bimodal sensor comprises a mechanoluminescent hybrid of ZnS–CaZnOS and a poly­(3,4-ethylenedioxythiophene):poly­(styrene sulfonate) (PEDOT:PSS) thermoresistant material, endowing the unambiguous transduction of pressure and temperature into optical and electrical signals, respectively. This device exhibits the highest temperature sensitivity of −0.6% °C–1 in the range of 21–60 °C and visual sensing of the applied forces at a low limitation of 2 N. The interference-free and light-emitting characteristics of this device permit user-interactive applications in robotics for encrypted communication as well as temperature and pressure monitoring, along with wireless signal transmission. This work provides an unexplored solution to signal interference of multimodal tactile sensors, which can be extended to other multifunctional sensing devices.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c09779