Loading…
Superhydrophobic nanohybrid sponges for separation of oil/ water mixtures
The industrial revolution has led to different types of environmental pollution, including frequent leakage of crude oil to marine waters and the contamination of wastewater with immiscible or emulsified oils and organic liquids from various industrial residues. Hence, developing multifunctional mat...
Saved in:
Published in: | Chemosphere (Oxford) 2022-05, Vol.294, p.133644-133644, Article 133644 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The industrial revolution has led to different types of environmental pollution, including frequent leakage of crude oil to marine waters and the contamination of wastewater with immiscible or emulsified oils and organic liquids from various industrial residues. Hence, developing multifunctional materials for oil/water separation is a field of high significance for the remediation of oil-polluted water. Recently, advanced superwetting materials have been employed for oily wastewater treatment. This review summarizes the recent development in fabricating superhydrophobic/superoleophilic nanohybrid polyurethane, melamine, and cellulose sponges for oil/water separation. The use of organic and/or inorganic nanohybrid materials opens the horizon for designing a diverse and wide range of superhydrophobic sponges due to the synergistic effect between the surface roughness and chemical composition. The discussion is organized based on different classes of low surface energy materials including thermoplastics, thermosets, elastomers, fluorinated polymers, conductive polymers, organosilanes, long alkyl chain compounds, and hydrophobic carbon-based materials. Recent examples for the separation of both immiscible and emulsified oil/water mixtures are presented, with a focus on fabrication strategies, separation efficiency, recyclability, mechanical performance, and durability. Currently, most studies did not focus on the mechanical/chemical stability of the fabricated sponges, and hence, future research directions shall address the fabrication of robust and long-term durable superhydrophobic sponges with proper guidelines. Similarly, more research focus is required to design superhydrophobic sponges for the separation of emulsified oil/water mixtures and heavy crude oil samples. Superhydrophobic sponges can be employed for treatment of oily wastewater, emulsion separation, and cleanup of crude oil spills.
[Display omitted]
•Superhydrophobic/superoleophilic sponges for oil/water separation are reviewed.•Various types of low surface energy materials are presented.•The separation of immiscible and emulsified oil/water mixtures is discussed.•Sponges with pH, temperature, and magnetic switchable wettability are highlighted.•Methods for the fabrication of superhydrophobic surfaces are summarized. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2022.133644 |