Loading…

Efficacy and Safety of Establishing an Optimal Path Through Unilateral Pedicle Under the Assistance of Surgical Robot in Percutaneous Kyphoplasty

Despite percutaneous kyphoplasty (PKP) being widely used to treat osteoporotic vertebral compression fractures (OVCFs), the details of puncture are still controversial. With the development of surgical robots in spine surgery, robotic-assisted PKP surgery will become a promising treatment strategy....

Full description

Saved in:
Bibliographic Details
Published in:Pain physician 2022-01, Vol.25 (1), p.E133-E140
Main Authors: Qian, Jun, Fang, Chao, Ge, Peng, Zhang, Ren-Jie, Song, Pei-Wen, Xu, Peng, Zhang, Yong, Shen, Cai-Liang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite percutaneous kyphoplasty (PKP) being widely used to treat osteoporotic vertebral compression fractures (OVCFs), the details of puncture are still controversial. With the development of surgical robots in spine surgery, robotic-assisted PKP surgery will become a promising treatment strategy. To evaluate the efficacy and safety of establishing an optimal working path through a unilateral pedicle approach to improve bone cement distribution under the assistance of a surgical robot in percutaneous kyphoplasty. Experimental and prospective study. PKP surgery under the assistance of the TINAVI robot was performed on 78 patients with osteoporotic vertebral compression fractures (OVCFs) from May 2018 to January 2020 in a single spine center. During the operation, the optimal path of the working channel made through unilateral pedicle puncture was designed according to the details of the fractured vertebral body under the guidance of the TINAVI surgical robot. Visual analog scale (VAS) scores of back pain, intraoperative blood loss, surgical time, and complications were recorded and evaluated. Postoperative fluoroscopy and 3D-CT were used to evaluate the distribution of bone cement. We have successfully performed 78 PKP surgeries under the assistance of the TINAVI robot. The mean procedure time was 13.9 ± 2.6 minutes from the beginning of C-arm scan to finish the injection of bone cement, and the intraoperative blood loss was 5.4 ± 2.8 mL. Pain of all cases was relieved immediately and significantly after PKP surgery; the VAS score was 7.5 ± 2.3 before surgery and 1.4 ± 0.8 post-surgery. The mean volume of bone cement was 4.7 ± 1.9 mL, and bone cement leakage occurred at the anterior edge of the fractured vertebral body in 2 patients, with no neurological and vascular injury in any of the cases. Postoperative fluoroscopy and 3D-CT showed that a good bone cement distribution evenly through unilateral pedicle puncture in the fractured vertebral body in all cases except the bone cement leakage in 2 patients. More cases are needed to evaluate the efficacy and stability of robot-assisted PKP surgery. A control group of PKP performed freehand should be included in this study. Robotic-assisted PKP surgery through the unilateral approach to establishing an optimal working channel is a safe and available procedure for treating OVCFs in terms of better distribution of bone cement, high accuracy, good repeatability, and less surgical trauma.
ISSN:1533-3159
2150-1149