Loading…

Novel electrosprayed enhanced microcapsules with different nanoparticles containing healing agents in a single multicore microcapsule

A novel method was employed to synthesize microcapsules containing both epoxy and hardener healing agents in a single microcapsule using a two-step electrospraying technique. Moreover, the sodium alginate microcapsule shell was enhanced with three types of nanoparticles, including MWCNT, nanoclay, a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2022-03, Vol.200, p.532-542
Main Authors: Barbaz-Isfahani, Reza, Saber-Samandari, Saeed, Salehi, Manouchehr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel method was employed to synthesize microcapsules containing both epoxy and hardener healing agents in a single microcapsule using a two-step electrospraying technique. Moreover, the sodium alginate microcapsule shell was enhanced with three types of nanoparticles, including MWCNT, nanoclay, and nanosilica. The surface morphology of fabricated microcapsules was examined using FESEM and AFM images. The TEM and elemental mapping images illustrated that the added nanoparticles into sodium alginate microcapsule shells were dispersed homogeneously. In addition, the mechanical properties of microcapsule shells were obtained using nanoindentation tests. Based on this research, the addition of nanoparticles increased the size and the roughness of microcapsules and improved the elastic modulus and the hardness of microcapsule's outer shells, significantly. For instance, the elastic modulus and the hardness of incorporated microcapsule shells with MWCNT increased by 85.5% and 91.3%, respectively, compared to neat sodium alginate multicore microcapsules, due to intrinsic high strength and high aspect ratio of MWCNT. [Display omitted]
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2022.01.084