Loading…
Bioactive Anti-Inflammatory Thermocatalytic Nanometal-Polyphenol Polypeptide Scaffolds for MRSA-Infection/Tumor Postsurgical Tissue Repair
Postsurgical tumor recurrence, infection, and tissue defect are still the challenges in clinical medicine. The development of multifunctional biomaterial scaffolds with a microenvironment-responsive tumor-infection therapy-tissue repair is highly desirable. Herein, we report a bioactive, injectable,...
Saved in:
Published in: | ACS applied materials & interfaces 2022-02, Vol.14 (4), p.4946-4958 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Postsurgical tumor recurrence, infection, and tissue defect are still the challenges in clinical medicine. The development of multifunctional biomaterial scaffolds with a microenvironment-responsive tumor-infection therapy-tissue repair is highly desirable. Herein, we report a bioactive, injectable, adhesive, self-healing, antibacterial, and anti-inflammatory metal-polyphenol polypeptide nanocomposite scaffold (PEAPF) with temporal–spatial-controlled inflammation-triggered therapeutic properties for efficient infection and postsurgical tumor therapy and skin repair. PEAPF scaffolds showed sustained and inherent inflammation-triggered Fenton catalysis and mild thermochemical effect for specifically inhibiting tumor recurrence in vitro and in vivo. The PEAPF scaffolds significantly facilitated skin tissue regeneration in MRSA-infected chronic wounds and postsurgical tissue defects after tumor resection. This study presents the multifunctional scaffold-based safe and efficient therapeutic strategy to prevent local tumor recurrence and enhance postsurgical tissue regeneration. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c21082 |