Loading…

Mixed-Valence Bimetallic Ce/Zr MOF-Based Nanoarchitecture: A Visible-Light-Active Photocatalyst for Ciprofloxacin Degradation and Hydrogen Evolution

A mixed-valency bimetallic Ce/Zr MOF with Ce3+/Ce4+ ions incorporated and an oxygen vacancy-rich single-component photocatalyst have been designed through the one-step solvothermal route to harness photons from the visible-light spectrum for green energy (H2) generation and ciprofloxacin (CIP) degra...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2022-02, Vol.38 (5), p.1766-1780
Main Authors: Tripathy, Suraj Prakash, Subudhi, Satyabrata, Ray, Asheli, Behera, Pragyandeepti, Bhaumik, Asim, Parida, Kulamani
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mixed-valency bimetallic Ce/Zr MOF with Ce3+/Ce4+ ions incorporated and an oxygen vacancy-rich single-component photocatalyst have been designed through the one-step solvothermal route to harness photons from the visible-light spectrum for green energy (H2) generation and ciprofloxacin (CIP) degradation. The one-pot-engineered bimetallic Ce/Zr MOF shows visible-light-active characteristics accompanied by a narrower band gap, along with enhanced exciton separation and superior ligand-to-metal charge transfer (LMCT), due to the presence of an interconvertible Ce3+/Ce4+ ions pair in comparison to its pristine MOF counterpart. The Ce ion insertion led to increase in electron density around the Zr4+ ion, along with generation of some oxygen vacancies (OV), which cumulatively led to the rise in the photo-reaction output. The synthesized UNH (Ce/Zr 1:1) MOF displayed a boosted photocatalytic H2 production rate of 468.30 μmol h–1 (ACE = 3.51%), which is around fourfolds higher than that of pristine MOFs. Moreover, for CIP photodegradation, the UNH (Ce/Zr 1:1) shows an enhanced efficiency of 90.8% and follows pseudo-first-order kinetics with a rate constant of 0.0363. Typically, the active species involved in the photo-redox reaction of the CIP photodegradation follows the order hydroxyl radical (OH•) < superoxide radical (O2 •– ), as confirmed by the TA and NBT tests. Consequently, the bimetallic Ce/Zr MOF can be readily employed as a robust photocatalyst with enhanced tendencies towards CIP degradation and H2 evolution.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.1c02873