Loading…
Development of a finite element biomechanical whole spine model for analyzing lumbar spine loads under caudocephalad acceleration
Background: Spine injury risk due to military conflict is an ongoing concern among defense organizations throughout the world. A better understanding of spine biomechanics could assist in developing protection devices to reduce injuries caused by caudocephalad acceleration (+Gz) in under-body blasts...
Saved in:
Published in: | Biomedical physics & engineering express 2020-11, Vol.7 (1), p.15009 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Spine injury risk due to military conflict is an ongoing concern among defense organizations throughout the world. A better understanding of spine biomechanics could assist in developing protection devices to reduce injuries caused by caudocephalad acceleration (+Gz) in under-body blasts (UBB). Although some finite element (FE) human models have demonstrated reasonable lumbar spine biofidelity, they were either partial spine models or not validated for UBB-type loading modes at the lumbar functional spinal unit (FSU) level, thus limiting their ability to analyze UBB-associated occupant kinematics. Methods: An FE functional representation of the human spine with simplified geometry was developed to study the lumbar spine responses under +Gz loading. Fifty-seven load curves obtained from post mortem human subject experiments were used to optimize the model. Results: The model was cumulatively validated for compression, flexion, extension, and anterior-, posterior-, and lateral-shears of the lumbar spine and flexion and extension of the cervical spine. The thoracic spine was optimized for flexion and compression. The cumulative CORrelation and Analysis (CORA) rating for the lumbar spine was 0.766 and the cervical spine was 0.818; both surpassed the 0.7 objective goal. The model's element size was confirmed as converged. Conclusions: An FE functional representation of the human spine was developed for +Gz lumbar load analysis. The lumbar and cervical spines were demonstrated to be quantitatively biofidelic to the FSU level for multi-directional loading and bending typically experienced in +Gz loading, filling the capability gap in current models. |
---|---|
ISSN: | 2057-1976 2057-1976 |
DOI: | 10.1088/2057-1976/abc89a |