Loading…
Synergistic effects of the hybridization between boron-doped carbon quantum dots and n/n-type g-C3N4 homojunction for boosted visible-light photocatalytic activity
Dye wastewater has raised a prevalent environmental concern due to its ability to prevent the penetration of sunlight through water, thereby causing a disruption to the aquatic ecosystem. Carbon quantum dots (CQDs) are particularly sought after for their highly tailorable photoelectrochemical and op...
Saved in:
Published in: | Environmental science and pollution research international 2022-06, Vol.29 (27), p.41272-41292 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dye wastewater has raised a prevalent environmental concern due to its ability to prevent the penetration of sunlight through water, thereby causing a disruption to the aquatic ecosystem. Carbon quantum dots (CQDs) are particularly sought after for their highly tailorable photoelectrochemical and optical properties. Simultaneously, graphitic carbon nitride (g-C
3
N
4
) has gained widespread attention due to its suitable band gap energy as well as excellent chemical and thermal stabilities. Herein, a novel boron-doped CQD (BCQD)-hybridized g-C
3
N
4
homojunction (CN) nanocomposite was fabricated via a facile hydrothermal route. The optimal photocatalyst sample, 1-BCQD/CN (with a 1:3 mass ratio of boron to CQD) accomplished a Rhodamine B (RhB, 10 mg/L) degradation efficiency of 96.8% within 4 h under an 18 W LED light irradiation. The kinetic rate constant of 1.39 × 10
–2
min
−1
achieved by the optimum sample was found to be 3.6- and 2.8-folds higher than that of pristine CN and un-doped CQD/CN, respectively. The surface morphology, crystalline structure, chemical composition and optical properties of photocatalyst samples were characterized via TEM, FESEM-EDX, XRD, FTIR, UV–Vis DRS and FL spectrometer. Based on the scavenging tests, it was revealed that the photogenerated holes (h
+
), superoxide anions (∙O
2
–
) and hydroxyl radicals (∙OH) were the primary reactive species responsible for the photodegradation process. Overall, the highly efficient 1-BCQD/CN composite with excellent photocatalytic activity could provide a cost-effective and robust means to address the increasing concerns over global environmental pollution. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-18253-0 |