Loading…
Nanofabrication of 1-D photonic bandgap structures along a photonic wire
A strongly-guided one-dimensional (1-D) waveguide called a photonic wire has high spontaneous emission coupling efficiency, enabling one to realize low-threshold lasers. Combined with the use of 1-D photonic bandgap structures consisting of arrays of holes etched within the photonic wire, novel micr...
Saved in:
Published in: | IEEE photonics technology letters 1996-04, Vol.8 (4), p.491-493 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A strongly-guided one-dimensional (1-D) waveguide called a photonic wire has high spontaneous emission coupling efficiency, enabling one to realize low-threshold lasers. Combined with the use of 1-D photonic bandgap structures consisting of arrays of holes etched within the photonic wire, novel microcavity lasers can be realized. We report the nanofabrication of a photonic bandgap structure for 1.5 μm wavelength along a InGaAsP photonic wire, and discuss numerical simulations for its electrodynamics. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/68.491093 |