Loading…

Stress fiber growth and remodeling determines cellular morphomechanics under uniaxial cyclic stretch

Stress fibers in the cytoskeleton are essential in maintaining cellular shape and influence cellular adhesion and migration. Cyclic uniaxial stretching results in cellular reorientation orthogonal to the applied stretch direction. The mechanistic cues underlying changes to cellular form and function...

Full description

Saved in:
Bibliographic Details
Published in:Biomechanics and modeling in mechanobiology 2022-04, Vol.21 (2), p.553-567
Main Authors: Chatterjee, Aritra, Kondaiah, Paturu, Gundiah, Namrata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-efe7c1e29f4fd304036cd02b5cadf6bc8ea886d592408ed343b340f298083fb53
cites cdi_FETCH-LOGICAL-c419t-efe7c1e29f4fd304036cd02b5cadf6bc8ea886d592408ed343b340f298083fb53
container_end_page 567
container_issue 2
container_start_page 553
container_title Biomechanics and modeling in mechanobiology
container_volume 21
creator Chatterjee, Aritra
Kondaiah, Paturu
Gundiah, Namrata
description Stress fibers in the cytoskeleton are essential in maintaining cellular shape and influence cellular adhesion and migration. Cyclic uniaxial stretching results in cellular reorientation orthogonal to the applied stretch direction. The mechanistic cues underlying changes to cellular form and function to stretch stimuli are currently underexplored. We show stretch-induced stress fiber lengthening, their realignment, and increased cortical actin in NIH 3T3 fibroblasts stretched over varied amplitudes and durations. Higher amounts of actin and stress fiber alignment were accompanied with an increase in the effective elastic modulus of cells. Microtubules did not contribute to the measured stiffness or reorientation response but were essential to the nuclear reorientation. We used a phenomenological growth and remodeling law, based on the experimental data, to model stress fiber elongation and reorientation dynamics based on a nonlinear, orthotropic, fiber-reinforced continuum representation of the cell. The model predicts the changes observed fibroblast morphology and increased cellular stiffness under uniaxial cyclic stretch which agrees with experimental results. Such studies are important in exploring the differences underlying mechanotransduction and cellular contractility under stretch.
doi_str_mv 10.1007/s10237-021-01548-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2624201009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624201009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-efe7c1e29f4fd304036cd02b5cadf6bc8ea886d592408ed343b340f298083fb53</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlb_gAsJdONm6snHzCTLUvwoFFyo65BJTu5Nmclckxlq--ub660tdOEqgTzvk8N5CXnP4IwB9J8KAy76BjhrgLVSNXcvyDHrWN_0WsLLx3urj8ibUq4BOAglXpMj0YJWQotj4n8sGUuhIQ6Y6SbPN8uW2uRpxmn2OMa0oR4XzFNMWKjDcVxHm-k05912ntBtbYqu0DX5ml9TtH-iHam7dWN0tFT54rZvyatgx4LvHs4T8uvL558X35qr718vL86vGieZXhoM2DuGXAcZvAAJonMe-NA660M3OIVWqc63mktQ6IUUg5AQuFagRBhacUI-Hry7PP9esSxmimU_sk04r8XwjksOdXe6oqfP0Ot5zalOVynJOt0KvhfyA-XyXErGYHY5TjbfGgZm34E5dGBqB-ZvB-auhj48qNdhQv8Y-bf0CogDUOpT2mB--vs_2nsUh5QC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641695325</pqid></control><display><type>article</type><title>Stress fiber growth and remodeling determines cellular morphomechanics under uniaxial cyclic stretch</title><source>Springer Link</source><creator>Chatterjee, Aritra ; Kondaiah, Paturu ; Gundiah, Namrata</creator><creatorcontrib>Chatterjee, Aritra ; Kondaiah, Paturu ; Gundiah, Namrata</creatorcontrib><description>Stress fibers in the cytoskeleton are essential in maintaining cellular shape and influence cellular adhesion and migration. Cyclic uniaxial stretching results in cellular reorientation orthogonal to the applied stretch direction. The mechanistic cues underlying changes to cellular form and function to stretch stimuli are currently underexplored. We show stretch-induced stress fiber lengthening, their realignment, and increased cortical actin in NIH 3T3 fibroblasts stretched over varied amplitudes and durations. Higher amounts of actin and stress fiber alignment were accompanied with an increase in the effective elastic modulus of cells. Microtubules did not contribute to the measured stiffness or reorientation response but were essential to the nuclear reorientation. We used a phenomenological growth and remodeling law, based on the experimental data, to model stress fiber elongation and reorientation dynamics based on a nonlinear, orthotropic, fiber-reinforced continuum representation of the cell. The model predicts the changes observed fibroblast morphology and increased cellular stiffness under uniaxial cyclic stretch which agrees with experimental results. Such studies are important in exploring the differences underlying mechanotransduction and cellular contractility under stretch.</description><identifier>ISSN: 1617-7959</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-021-01548-z</identifier><identifier>PMID: 35098393</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actin ; Actins - metabolism ; Animals ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Cell adhesion ; Contractility ; Cytology ; Cytoskeleton ; Elongation ; Engineering ; Fiber reinforced materials ; Fibers ; Fibroblasts ; Homeostasis ; Influence ; Mechanical properties ; Mechanotransduction ; Mechanotransduction, Cellular - physiology ; Mice ; Microtubules ; Modulus of elasticity ; NIH 3T3 Cells ; Original Paper ; Realignment ; Stiffness ; Stress Fibers - metabolism ; Stress, Mechanical ; Theoretical and Applied Mechanics</subject><ispartof>Biomechanics and modeling in mechanobiology, 2022-04, Vol.21 (2), p.553-567</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-efe7c1e29f4fd304036cd02b5cadf6bc8ea886d592408ed343b340f298083fb53</citedby><cites>FETCH-LOGICAL-c419t-efe7c1e29f4fd304036cd02b5cadf6bc8ea886d592408ed343b340f298083fb53</cites><orcidid>0000-0002-9882-5232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35098393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, Aritra</creatorcontrib><creatorcontrib>Kondaiah, Paturu</creatorcontrib><creatorcontrib>Gundiah, Namrata</creatorcontrib><title>Stress fiber growth and remodeling determines cellular morphomechanics under uniaxial cyclic stretch</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Stress fibers in the cytoskeleton are essential in maintaining cellular shape and influence cellular adhesion and migration. Cyclic uniaxial stretching results in cellular reorientation orthogonal to the applied stretch direction. The mechanistic cues underlying changes to cellular form and function to stretch stimuli are currently underexplored. We show stretch-induced stress fiber lengthening, their realignment, and increased cortical actin in NIH 3T3 fibroblasts stretched over varied amplitudes and durations. Higher amounts of actin and stress fiber alignment were accompanied with an increase in the effective elastic modulus of cells. Microtubules did not contribute to the measured stiffness or reorientation response but were essential to the nuclear reorientation. We used a phenomenological growth and remodeling law, based on the experimental data, to model stress fiber elongation and reorientation dynamics based on a nonlinear, orthotropic, fiber-reinforced continuum representation of the cell. The model predicts the changes observed fibroblast morphology and increased cellular stiffness under uniaxial cyclic stretch which agrees with experimental results. Such studies are important in exploring the differences underlying mechanotransduction and cellular contractility under stretch.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cell adhesion</subject><subject>Contractility</subject><subject>Cytology</subject><subject>Cytoskeleton</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Fiber reinforced materials</subject><subject>Fibers</subject><subject>Fibroblasts</subject><subject>Homeostasis</subject><subject>Influence</subject><subject>Mechanical properties</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Microtubules</subject><subject>Modulus of elasticity</subject><subject>NIH 3T3 Cells</subject><subject>Original Paper</subject><subject>Realignment</subject><subject>Stiffness</subject><subject>Stress Fibers - metabolism</subject><subject>Stress, Mechanical</subject><subject>Theoretical and Applied Mechanics</subject><issn>1617-7959</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoMotlb_gAsJdONm6snHzCTLUvwoFFyo65BJTu5Nmclckxlq--ub660tdOEqgTzvk8N5CXnP4IwB9J8KAy76BjhrgLVSNXcvyDHrWN_0WsLLx3urj8ibUq4BOAglXpMj0YJWQotj4n8sGUuhIQ6Y6SbPN8uW2uRpxmn2OMa0oR4XzFNMWKjDcVxHm-k05912ntBtbYqu0DX5ml9TtH-iHam7dWN0tFT54rZvyatgx4LvHs4T8uvL558X35qr718vL86vGieZXhoM2DuGXAcZvAAJonMe-NA660M3OIVWqc63mktQ6IUUg5AQuFagRBhacUI-Hry7PP9esSxmimU_sk04r8XwjksOdXe6oqfP0Ot5zalOVynJOt0KvhfyA-XyXErGYHY5TjbfGgZm34E5dGBqB-ZvB-auhj48qNdhQv8Y-bf0CogDUOpT2mB--vs_2nsUh5QC</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chatterjee, Aritra</creator><creator>Kondaiah, Paturu</creator><creator>Gundiah, Namrata</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9882-5232</orcidid></search><sort><creationdate>20220401</creationdate><title>Stress fiber growth and remodeling determines cellular morphomechanics under uniaxial cyclic stretch</title><author>Chatterjee, Aritra ; Kondaiah, Paturu ; Gundiah, Namrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-efe7c1e29f4fd304036cd02b5cadf6bc8ea886d592408ed343b340f298083fb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cell adhesion</topic><topic>Contractility</topic><topic>Cytology</topic><topic>Cytoskeleton</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Fiber reinforced materials</topic><topic>Fibers</topic><topic>Fibroblasts</topic><topic>Homeostasis</topic><topic>Influence</topic><topic>Mechanical properties</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Microtubules</topic><topic>Modulus of elasticity</topic><topic>NIH 3T3 Cells</topic><topic>Original Paper</topic><topic>Realignment</topic><topic>Stiffness</topic><topic>Stress Fibers - metabolism</topic><topic>Stress, Mechanical</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Aritra</creatorcontrib><creatorcontrib>Kondaiah, Paturu</creatorcontrib><creatorcontrib>Gundiah, Namrata</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Aritra</au><au>Kondaiah, Paturu</au><au>Gundiah, Namrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress fiber growth and remodeling determines cellular morphomechanics under uniaxial cyclic stretch</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>21</volume><issue>2</issue><spage>553</spage><epage>567</epage><pages>553-567</pages><issn>1617-7959</issn><eissn>1617-7940</eissn><abstract>Stress fibers in the cytoskeleton are essential in maintaining cellular shape and influence cellular adhesion and migration. Cyclic uniaxial stretching results in cellular reorientation orthogonal to the applied stretch direction. The mechanistic cues underlying changes to cellular form and function to stretch stimuli are currently underexplored. We show stretch-induced stress fiber lengthening, their realignment, and increased cortical actin in NIH 3T3 fibroblasts stretched over varied amplitudes and durations. Higher amounts of actin and stress fiber alignment were accompanied with an increase in the effective elastic modulus of cells. Microtubules did not contribute to the measured stiffness or reorientation response but were essential to the nuclear reorientation. We used a phenomenological growth and remodeling law, based on the experimental data, to model stress fiber elongation and reorientation dynamics based on a nonlinear, orthotropic, fiber-reinforced continuum representation of the cell. The model predicts the changes observed fibroblast morphology and increased cellular stiffness under uniaxial cyclic stretch which agrees with experimental results. Such studies are important in exploring the differences underlying mechanotransduction and cellular contractility under stretch.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35098393</pmid><doi>10.1007/s10237-021-01548-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9882-5232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2022-04, Vol.21 (2), p.553-567
issn 1617-7959
1617-7940
language eng
recordid cdi_proquest_miscellaneous_2624201009
source Springer Link
subjects Actin
Actins - metabolism
Animals
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Cell adhesion
Contractility
Cytology
Cytoskeleton
Elongation
Engineering
Fiber reinforced materials
Fibers
Fibroblasts
Homeostasis
Influence
Mechanical properties
Mechanotransduction
Mechanotransduction, Cellular - physiology
Mice
Microtubules
Modulus of elasticity
NIH 3T3 Cells
Original Paper
Realignment
Stiffness
Stress Fibers - metabolism
Stress, Mechanical
Theoretical and Applied Mechanics
title Stress fiber growth and remodeling determines cellular morphomechanics under uniaxial cyclic stretch
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20fiber%20growth%20and%20remodeling%20determines%20cellular%20morphomechanics%20under%20uniaxial%20cyclic%20stretch&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Chatterjee,%20Aritra&rft.date=2022-04-01&rft.volume=21&rft.issue=2&rft.spage=553&rft.epage=567&rft.pages=553-567&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-021-01548-z&rft_dat=%3Cproquest_cross%3E2624201009%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-efe7c1e29f4fd304036cd02b5cadf6bc8ea886d592408ed343b340f298083fb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641695325&rft_id=info:pmid/35098393&rfr_iscdi=true