Loading…
JNK-dependent phosphorylation and nuclear translocation of EGR-1 promotes cardiomyocyte apoptosis
Myocardial apoptosis induced by myocardial ischemia and hyperlipemia are the main causes of high mortality of cardiovascular diseases. It is not clear whether there is a common mechanism responsible for these two kinds of cardiomyocyte apoptosis. Previous studies demonstrated that early growth respo...
Saved in:
Published in: | Apoptosis (London) 2022-04, Vol.27 (3-4), p.246-260 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Myocardial apoptosis induced by myocardial ischemia and hyperlipemia are the main causes of high mortality of cardiovascular diseases. It is not clear whether there is a common mechanism responsible for these two kinds of cardiomyocyte apoptosis. Previous studies demonstrated that early growth response protein 1 (EGR-1) has a pro-apoptotic effect on cardiomyocytes under various stress conditions. Here, we found that EGR-1 is also involved in cardiomyocyte apoptosis induced by both ischemia and high-fat, but how EGR-1 enters the nucleus and whether nuclear EGR-1 (nEGR-1) has a universal effect on cardiomyocyte apoptosis are still unknown. By analyzing the phosphorylation sites and nucleation information of EGR-1, we constructed different mutant plasmids to confirm that the nucleus location of EGR-1 requires Ser501 phosphorylation and regulated by JNK. Furthermore, the pro-apoptotic effect of nEGR-1 was further explored through genetic methods. The results showed that EGR-1 positively regulates the mRNA levels of apoptosis-related proteins (ATF2, CTCF, HAND2, ELK1), which may be the downstream targets of EGR-1 to promote the cardiomyocyte apoptosis. Our research announced the universal pro-apoptotic function of nEGR-1 and explored the mechanism of its nucleus location in cardiomyocytes, providing a new target for the “homotherapy for heteropathy” to cardiovascular diseases. |
---|---|
ISSN: | 1360-8185 1573-675X |
DOI: | 10.1007/s10495-022-01714-3 |