Loading…

Upregulation of Uric Acid Production and Caspase 3 Signalling Mediates Rohypnol-Induced Cardiorenal Damage

The global prevalence of illicit drug use is on the increase with attendant complications like cardiorenal collapse. One such substance of abuse is rohypnol. Despite its ban in most countries, it remains a popular substance of abuse. Whether or not rohypnol induces cardiorenal injury and the associa...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular toxicology 2022-05, Vol.22 (5), p.419-435
Main Authors: Akhigbe, R. E., Oladipo, A. A., Oyedokun, P. A., Hamed, M. A., Okeleji, L. O., Ajayi, A. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The global prevalence of illicit drug use is on the increase with attendant complications like cardiorenal collapse. One such substance of abuse is rohypnol. Despite its ban in most countries, it remains a popular substance of abuse. Whether or not rohypnol induces cardiorenal injury and the associated mechanism is yet to be elucidated. Therefore, the present study investigated the effect of rohypnol on cardiorenal integrity and functions, and glucolipid metabolism. Forty-eight male Wistar rats randomized into six groups ( n  = 8/group) received (per os) vehicle, low-dose (2 mg/kg) and high-dose (4 mg/kg) rohypnol once daily for twenty eight days, with or without a cessation period. Data revealed that rohypnol exposure irreversibly caused insulin resistance, hyperglycaemia, and dyslipidaemia. This was accompanied by reduced cardiorenal mass and impaired cardiorenal cytoarchitecture and function. Furthermore, rohypnol treatment promoted oxidative stress, inflammation, genotoxicity, and decreased cardiorenal activities of Na + –K + –ATPase, Ca 2+ –ATPase, and Mg 2+ –ATPase. These alterations were associated with enhanced uric acid generation and caspase 3 activity in the cardiorenal complex. Thus, this study reveals that rohypnol exposure triggers cardiorenal toxicity with incident insulin resistance, glucolipid and cardiorenal proton pump dysregulation, altered redox state, and inflammation via enhancement of uric acid generation and caspase 3-dependent mechanism.
ISSN:1530-7905
1559-0259
DOI:10.1007/s12012-022-09723-z