Loading…
Enhanced bandwidth distributed acoustic sensing using a frequency multiplexed pulse train and micro-machined point reflector fiber
In this Letter, we present an enhanced bandwidth distributed acoustic sensor (DAS) that uses a frequency multiplexed interrogation system to probe a micro-machined point reflector fiber. The fiber contains a series of discrete point reflectors with reflectance as high as -48 dB, while the frequency...
Saved in:
Published in: | Optics letters 2022-02, Vol.47 (3), p.529-532 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this Letter, we present an enhanced bandwidth distributed acoustic sensor (DAS) that uses a frequency multiplexed interrogation system to probe a micro-machined point reflector fiber. The fiber contains a series of discrete point reflectors with reflectance as high as -48 dB, while the frequency multiplexed interrogator allows us to increase the effective pulse repetition rate by a factor of 10. Together, this enables a phase noise as low as -101 dB (re rad
/Hz) for a 2.5 km fiber with 10 m spatial resolution, corresponding to a strain noise of 0.095
/Hz. This scheme also enables a 10-fold increase in the sensor bandwidth without introducing noise due to interference fading. Finally, we demonstrate sensing at ranges up to 10 km using a fiber containing 1000 point reflectors, illustrating the scalability of this approach. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.449223 |