Loading…

An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices

A perfectly matched layer (PML) absorbing material composed of a uniaxial anisotropic material is presented for the truncation of finite-difference time-domain (FDTD) lattices. It is shown that the uniaxial PML material formulation is mathematically equivalent to the perfectly matched layer method p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 1996-12, Vol.44 (12), p.1630-1639
Main Author: Gedney, S.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A perfectly matched layer (PML) absorbing material composed of a uniaxial anisotropic material is presented for the truncation of finite-difference time-domain (FDTD) lattices. It is shown that the uniaxial PML material formulation is mathematically equivalent to the perfectly matched layer method published by Berenger (see J. Computat. Phys., Oct. 1994). However, unlike Berenger's technique, the uniaxial PML absorbing medium presented in this paper is based on a Maxwellian formulation. Numerical examples demonstrate that the FDTD implementation of the uniaxial PML medium is stable, equal in effectiveness as compared to Berenger's PML medium, while being more computationally efficient.
ISSN:0018-926X
1558-2221
DOI:10.1109/8.546249