Loading…

Neuroprotective Effect of Lentivirus-Mediated FGF21 Gene Delivery in Experimental Alzheimer’s Disease is Augmented when Concerted with Rapamycin

Alzheimer type of dementia is accompanied with progressive loss of cognitive function that directly correlates with accumulation of amyloid beta plaques. It is known that Fibroblast growth factor 21 (FGF21), a metabolic hormone, with strong neuroprotective potential, is induced during oxidative stre...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurobiology 2022-05, Vol.59 (5), p.2659-2677
Main Authors: Kakoty, Violina, C, Sarathlal K, Yang, Chih-Hao, Kumari, Shobha, Dubey, Sunil Kumar, Taliyan, Rajeev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer type of dementia is accompanied with progressive loss of cognitive function that directly correlates with accumulation of amyloid beta plaques. It is known that Fibroblast growth factor 21 (FGF21), a metabolic hormone, with strong neuroprotective potential, is induced during oxidative stress in Alzheimer’s disease. Interestingly, FGF21 cross-talks with autophagy, a mechanism involved in the clearance of abnormal protein aggregate. Moreover, autophagy activation by Rapamycin delivers neuroprotective role in Alzheimer’s disease. However, the synergistic neuroprotective efficacy of overexpressed FGF21 along with Rapamycin is not yet investigated. Therefore, the present study examined whether overexpressed FGF21 along with autophagy activation ameliorated neurodegenerative pathology in Alzheimer’s disease. We found that cognitive deficits in rats with intracerebroventricular injection of Amyloid beta 1 - 42 oligomers were restored when injected with FGF21-expressing lentiviral vector combined with Rapamycin. Furthermore, overexpression of FGF21 along with Rapamycin downregulated protein levels of Amyloid beta 1 - 42 and phosphorylated tau and expression of major autophagy proteins along with stabilization of oxidative stress. Moreover, FGF21 overexpressed rats treated with Rapamycin revamped the neuronal density as confirmed by histochemical, cresyl violet and immunofluorescence analysis. These results generate compelling evidence that Alzheimer’s disease pathology exacerbated by oligomeric amyloid beta may be restored by FGF21 supplementation combined with Rapamycin and thus present an appropriate treatment paradigm for people affected with Alzheimer’s disease. Graphical abstract
ISSN:0893-7648
1559-1182
DOI:10.1007/s12035-022-02741-6