Loading…

Shape morphing mechanical metamaterials through reversible plasticity

Biological organisms such as the octopus can reconfigure their shape and properties to perform diverse tasks. However, soft machines struggle to achieve complex configurations, morph into shape to support loads, and go between multiple states reversibly. Here, we introduce a multifunctional shape-mo...

Full description

Saved in:
Bibliographic Details
Published in:Science robotics 2022-02, Vol.7 (63), p.eabg2171-eabg2171
Main Authors: Hwang, Dohgyu, Barron, 3rd, Edward J, Haque, A B M Tahidul, Bartlett, Michael D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biological organisms such as the octopus can reconfigure their shape and properties to perform diverse tasks. However, soft machines struggle to achieve complex configurations, morph into shape to support loads, and go between multiple states reversibly. Here, we introduce a multifunctional shape-morphing material with reversible and rapid polymorphic reconfigurability. We couple elastomeric kirigami with an unconventional reversible plasticity mechanism in metal alloys to rapidly ( 0.1 seconds) morph flat sheets into complex, load-bearing shapes, with reversibility and self-healing through phase change. This kirigami composite overcomes trade-offs in deformability and load-bearing capacity and eliminates power requirements to sustain reconfigured shapes. We demonstrate this material through integration with onboard control, motors, and power to create a soft robotic morphing drone, which autonomously transforms from a ground to air vehicle and an underwater morphing machine, which can be reversibly deployed to collect cargo.
ISSN:2470-9476
2470-9476
DOI:10.1126/scirobotics.abg2171