Loading…
Quantification of Geometric Errors Made Simple: Application to Main-Group Molecular Structures
Nearly all electronic structure simulations begin with obtaining approximate geometries, making a systematic quantification of errors in approximate molecular structures of key importance. Recently, the geometric energy offset (GEO) framework based on a single and natural measure for quantifying and...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-02, Vol.126 (7), p.1300-1311 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nearly all electronic structure simulations begin with obtaining approximate geometries, making a systematic quantification of errors in approximate molecular structures of key importance. Recently, the geometric energy offset (GEO) framework based on a single and natural measure for quantifying and analyzing these errors has been proposed ( J. Phys. Chem. Lett. 2020, 11, 99579964 ). An accurate and far less costly approximation to GEO is utilized here to readily quantify errors in main-group structures and analyze them in a chemically intuitive way. The use of semiexperimental geometries as a reference further simplifies the analysis. The analysis reveals new insights into the geometric performance of methods, their rankings, as well as patterns across different classes of methods and basis sets that arise from the analysis. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.1c10688 |