Loading…
Two-Component Redox Organocatalyst for Peptide Bond Formation
Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational desig...
Saved in:
Published in: | Journal of the American Chemical Society 2022-03, Vol.144 (8), p.3637-3643 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623 |
---|---|
cites | cdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623 |
container_end_page | 3643 |
container_issue | 8 |
container_start_page | 3637 |
container_title | Journal of the American Chemical Society |
container_volume | 144 |
creator | Handoko Panigrahi, Nihar R Arora, Paramjit S |
description | Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation. |
doi_str_mv | 10.1021/jacs.1c12798 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2631616077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631616077</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMaOMDKT47HzYAwOtKCBVKkJljhzbQakSO9iOoP-eVC2wMJ1Oeu69uwehS8BTwARuN0L6KUggOWdHaAwpwXEKJDtGY4wxiXOW0RE6834ztAlhcIpGNAXGKKNjdLf-tPHctp012oToVSv7Fa3cuzBWiiCarQ9RZV30ortQKx3NrFHRwrpWhNqac3RSicbri0OdoLfFw3r-FC9Xj8_z-2UsKMchzrhOFCEyp0ywVGmc0IoKyHPNeaVSWjJSsrLEQiRyuJZLriFlAFhQolhG6ARd73M7Zz967UPR1l7qphFG294XJKOQQYbzfEBv9qh01nunq6JzdSvctgBc7IQVO2HFQdiAXx2S-7LV6hf-MfS3eje1sb0zw6P_Z30DgSVyxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631616077</pqid></control><display><type>article</type><title>Two-Component Redox Organocatalyst for Peptide Bond Formation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Handoko ; Panigrahi, Nihar R ; Arora, Paramjit S</creator><creatorcontrib>Handoko ; Panigrahi, Nihar R ; Arora, Paramjit S</creatorcontrib><description>Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c12798</identifier><identifier>PMID: 35188383</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amides ; Amines ; Amino Acids - chemistry ; Oxidation-Reduction ; Peptide Biosynthesis ; Peptides - chemistry</subject><ispartof>Journal of the American Chemical Society, 2022-03, Vol.144 (8), p.3637-3643</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</citedby><cites>FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</cites><orcidid>0000-0002-4433-3080 ; 0000-0001-5315-401X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35188383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Handoko</creatorcontrib><creatorcontrib>Panigrahi, Nihar R</creatorcontrib><creatorcontrib>Arora, Paramjit S</creatorcontrib><title>Two-Component Redox Organocatalyst for Peptide Bond Formation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.</description><subject>Amides</subject><subject>Amines</subject><subject>Amino Acids - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Peptide Biosynthesis</subject><subject>Peptides - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMaOMDKT47HzYAwOtKCBVKkJljhzbQakSO9iOoP-eVC2wMJ1Oeu69uwehS8BTwARuN0L6KUggOWdHaAwpwXEKJDtGY4wxiXOW0RE6834ztAlhcIpGNAXGKKNjdLf-tPHctp012oToVSv7Fa3cuzBWiiCarQ9RZV30ortQKx3NrFHRwrpWhNqac3RSicbri0OdoLfFw3r-FC9Xj8_z-2UsKMchzrhOFCEyp0ywVGmc0IoKyHPNeaVSWjJSsrLEQiRyuJZLriFlAFhQolhG6ARd73M7Zz967UPR1l7qphFG294XJKOQQYbzfEBv9qh01nunq6JzdSvctgBc7IQVO2HFQdiAXx2S-7LV6hf-MfS3eje1sb0zw6P_Z30DgSVyxQ</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Handoko</creator><creator>Panigrahi, Nihar R</creator><creator>Arora, Paramjit S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4433-3080</orcidid><orcidid>https://orcid.org/0000-0001-5315-401X</orcidid></search><sort><creationdate>20220302</creationdate><title>Two-Component Redox Organocatalyst for Peptide Bond Formation</title><author>Handoko ; Panigrahi, Nihar R ; Arora, Paramjit S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amides</topic><topic>Amines</topic><topic>Amino Acids - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Peptide Biosynthesis</topic><topic>Peptides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handoko</creatorcontrib><creatorcontrib>Panigrahi, Nihar R</creatorcontrib><creatorcontrib>Arora, Paramjit S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handoko</au><au>Panigrahi, Nihar R</au><au>Arora, Paramjit S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Component Redox Organocatalyst for Peptide Bond Formation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-03-02</date><risdate>2022</risdate><volume>144</volume><issue>8</issue><spage>3637</spage><epage>3643</epage><pages>3637-3643</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35188383</pmid><doi>10.1021/jacs.1c12798</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4433-3080</orcidid><orcidid>https://orcid.org/0000-0001-5315-401X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2022-03, Vol.144 (8), p.3637-3643 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2631616077 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Amides Amines Amino Acids - chemistry Oxidation-Reduction Peptide Biosynthesis Peptides - chemistry |
title | Two-Component Redox Organocatalyst for Peptide Bond Formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Component%20Redox%20Organocatalyst%20for%20Peptide%20Bond%20Formation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Handoko&rft.date=2022-03-02&rft.volume=144&rft.issue=8&rft.spage=3637&rft.epage=3643&rft.pages=3637-3643&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c12798&rft_dat=%3Cproquest_cross%3E2631616077%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2631616077&rft_id=info:pmid/35188383&rfr_iscdi=true |