Loading…

Two-Component Redox Organocatalyst for Peptide Bond Formation

Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational desig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2022-03, Vol.144 (8), p.3637-3643
Main Authors: Handoko, Panigrahi, Nihar R, Arora, Paramjit S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623
cites cdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623
container_end_page 3643
container_issue 8
container_start_page 3637
container_title Journal of the American Chemical Society
container_volume 144
creator Handoko
Panigrahi, Nihar R
Arora, Paramjit S
description Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.
doi_str_mv 10.1021/jacs.1c12798
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2631616077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631616077</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMaOMDKT47HzYAwOtKCBVKkJljhzbQakSO9iOoP-eVC2wMJ1Oeu69uwehS8BTwARuN0L6KUggOWdHaAwpwXEKJDtGY4wxiXOW0RE6834ztAlhcIpGNAXGKKNjdLf-tPHctp012oToVSv7Fa3cuzBWiiCarQ9RZV30ortQKx3NrFHRwrpWhNqac3RSicbri0OdoLfFw3r-FC9Xj8_z-2UsKMchzrhOFCEyp0ywVGmc0IoKyHPNeaVSWjJSsrLEQiRyuJZLriFlAFhQolhG6ARd73M7Zz967UPR1l7qphFG294XJKOQQYbzfEBv9qh01nunq6JzdSvctgBc7IQVO2HFQdiAXx2S-7LV6hf-MfS3eje1sb0zw6P_Z30DgSVyxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631616077</pqid></control><display><type>article</type><title>Two-Component Redox Organocatalyst for Peptide Bond Formation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Handoko ; Panigrahi, Nihar R ; Arora, Paramjit S</creator><creatorcontrib>Handoko ; Panigrahi, Nihar R ; Arora, Paramjit S</creatorcontrib><description>Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c12798</identifier><identifier>PMID: 35188383</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amides ; Amines ; Amino Acids - chemistry ; Oxidation-Reduction ; Peptide Biosynthesis ; Peptides - chemistry</subject><ispartof>Journal of the American Chemical Society, 2022-03, Vol.144 (8), p.3637-3643</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</citedby><cites>FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</cites><orcidid>0000-0002-4433-3080 ; 0000-0001-5315-401X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35188383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Handoko</creatorcontrib><creatorcontrib>Panigrahi, Nihar R</creatorcontrib><creatorcontrib>Arora, Paramjit S</creatorcontrib><title>Two-Component Redox Organocatalyst for Peptide Bond Formation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.</description><subject>Amides</subject><subject>Amines</subject><subject>Amino Acids - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Peptide Biosynthesis</subject><subject>Peptides - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMaOMDKT47HzYAwOtKCBVKkJljhzbQakSO9iOoP-eVC2wMJ1Oeu69uwehS8BTwARuN0L6KUggOWdHaAwpwXEKJDtGY4wxiXOW0RE6834ztAlhcIpGNAXGKKNjdLf-tPHctp012oToVSv7Fa3cuzBWiiCarQ9RZV30ortQKx3NrFHRwrpWhNqac3RSicbri0OdoLfFw3r-FC9Xj8_z-2UsKMchzrhOFCEyp0ywVGmc0IoKyHPNeaVSWjJSsrLEQiRyuJZLriFlAFhQolhG6ARd73M7Zz967UPR1l7qphFG294XJKOQQYbzfEBv9qh01nunq6JzdSvctgBc7IQVO2HFQdiAXx2S-7LV6hf-MfS3eje1sb0zw6P_Z30DgSVyxQ</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Handoko</creator><creator>Panigrahi, Nihar R</creator><creator>Arora, Paramjit S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4433-3080</orcidid><orcidid>https://orcid.org/0000-0001-5315-401X</orcidid></search><sort><creationdate>20220302</creationdate><title>Two-Component Redox Organocatalyst for Peptide Bond Formation</title><author>Handoko ; Panigrahi, Nihar R ; Arora, Paramjit S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amides</topic><topic>Amines</topic><topic>Amino Acids - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Peptide Biosynthesis</topic><topic>Peptides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handoko</creatorcontrib><creatorcontrib>Panigrahi, Nihar R</creatorcontrib><creatorcontrib>Arora, Paramjit S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handoko</au><au>Panigrahi, Nihar R</au><au>Arora, Paramjit S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Component Redox Organocatalyst for Peptide Bond Formation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-03-02</date><risdate>2022</risdate><volume>144</volume><issue>8</issue><spage>3637</spage><epage>3643</epage><pages>3637-3643</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acidsthe standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agentsit depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35188383</pmid><doi>10.1021/jacs.1c12798</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4433-3080</orcidid><orcidid>https://orcid.org/0000-0001-5315-401X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-03, Vol.144 (8), p.3637-3643
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2631616077
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Amides
Amines
Amino Acids - chemistry
Oxidation-Reduction
Peptide Biosynthesis
Peptides - chemistry
title Two-Component Redox Organocatalyst for Peptide Bond Formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Component%20Redox%20Organocatalyst%20for%20Peptide%20Bond%20Formation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Handoko&rft.date=2022-03-02&rft.volume=144&rft.issue=8&rft.spage=3637&rft.epage=3643&rft.pages=3637-3643&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c12798&rft_dat=%3Cproquest_cross%3E2631616077%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a390t-69e4d22c738a85de043f3a177e99fd53b82b8bb0aa4c8639c9e158110a32d8623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2631616077&rft_id=info:pmid/35188383&rfr_iscdi=true