Loading…

Nontoxic Metal-Free Visible Light-Responsive Carbon Nitride Quantum Dots Cause Oxidative Stress and Cancer-Specific Membrane Damage

Graphitic carbon nitride (also known as g-CN or g-C3N4) has the intrinsic ability to generate electron–hole pairs under visible light illumination, resulting in the generation of reactive oxygen species (ROS). We report g-CN quantum dots (g-CNQDs) as a standalone photodynamic transducer for impartin...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied bio materials 2022-03, Vol.5 (3), p.1169-1178
Main Authors: Yadav, Pranjali, Mimansa, Kailasam, Kamalakannan, Shanavas, Asifkhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphitic carbon nitride (also known as g-CN or g-C3N4) has the intrinsic ability to generate electron–hole pairs under visible light illumination, resulting in the generation of reactive oxygen species (ROS). We report g-CN quantum dots (g-CNQDs) as a standalone photodynamic transducer for imparting significant oxidative stress in glioma cells, manifested by the loss of mitochondrial membrane potential. With an optimized treatment time, visible light source, and exposure window, the photodynamic treatment with g-CNQDs could achieve ∼90% cancer cell death via apoptosis. The g-CNQDs, otherwise biocompatible with normal cells up to 5 mg/mL, showed ∼20% necrotic cancer cell death in the absence of light due to membrane damage induced by a charge shielding effect at the acidic pH prevailing in the tumor environment. Acute toxicity analysis in C57BL/6 mice with intravenously injected g-CNQDs at a 20 mg/kg dose showed no signs of inflammatory response or organ damage.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.1c01219