Loading…
Separation of SO2 and NO2 with the Zeolite Membrane: Molecular Simulation Insights into the Advantageous NO2 Dimerization Effect
NO2 and SO2, as valuable chemical feedstock, are worth being recycled from flue gases. The separation of NO2 and SO2 is a key process step to enable practical deployment. This work proposes SO2 separation from NO2 using chabazite zeolite (SSZ-13) membranes and provides insights into the feasibility...
Saved in:
Published in: | Langmuir 2022-03, Vol.38 (9), p.2751-2762 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NO2 and SO2, as valuable chemical feedstock, are worth being recycled from flue gases. The separation of NO2 and SO2 is a key process step to enable practical deployment. This work proposes SO2 separation from NO2 using chabazite zeolite (SSZ-13) membranes and provides insights into the feasibility and advantages of this process using molecular simulation. Grand canonical ensemble Monte Carlo and equilibrium molecular dynamics methods were respectively adopted to simulate the adsorption equilibria and diffusion of SO2, NO2, and N2O4 on SSZ-13 at varying Si/Al (1, 5, 11, 71, +∞), temperatures (248–348 K), and pressures (0–100 kPa). The adsorption capacity and affinity (SO2 > N2O4 > NO2) demonstrated strong competitive adsorption of SO2 based on dual-site interactions and significant reduction in NO2 adsorption due to dimerization in the ternary gas mixture. The simulated order of diffusivity (NO2 > SO2 > N2O4) on SSZ-13 demonstrated rapid transport of NO2, strong temperature dependence of SO2 diffusion, and the impermeability of SSZ-13 to N2O4. The membrane permeability of each component was simulated, rendering a SO2/NO2 membrane separation factor of 26.34 which is much higher than adsorption equilibrium (6.9) and kinetic (2.2) counterparts. The key role of NO2–N2O4 dimerization in molecular sieving of SO2 from NO2 was addressed, providing a facile membrane separation strategy at room temperature. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c02290 |