Loading…
In Silico Method Development of Achiral and Chiral Tandem Column Reversed-phase Liquid Chromatography for Multicomponent Pharmaceutical Mixtures
Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve multicomponent mixtures by serially coupling columns on readily available one-dimensional separation systems without specialized user training. Yet, adoption of this technique remains limited, mainly due to...
Saved in:
Published in: | Analytical chemistry (Washington) 2022-03, Vol.94 (9), p.4065-4071 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve multicomponent mixtures by serially coupling columns on readily available one-dimensional separation systems without specialized user training. Yet, adoption of this technique remains limited, mainly due to the difficulty in identifying optimal selectivity out of many possible tandem column combinations. At this point, method development and optimization require laborious “hit-or-miss” experimentation and “blind” screening when investigating different column selectivity without standard analytes. As a result, many chromatography practitioners end up combining two columns of similar selectivity, limiting the scope and potential of tandem column LC as a mainstay for industrial applications. To circumvent this challenge, we herein introduce a straightforward in silico multifactorial approach as a framework to expediently map the separation landscape across multiple tandem columns (achiral and chiral) and eluent combinations (isocratic and gradient elution) under reversed-phase LC conditions. Retention models were built using commercially available LC simulator software showcasing less than 2% difference between experimental and simulated retention times for analytes of interest in multicomponent pharmaceutical mixtures (e.g., metabolites and cyclic peptides). |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c05551 |