Loading…

Underwater image enhancement using adaptive color restoration and dehazing

Underwater images captured by optical cameras can be degraded by light attenuation and scattering, which leads to deteriorated visual image quality. The technique of underwater image enhancement plays an important role in a wide range of subsequent applications such as image segmentation and object...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2022-02, Vol.30 (4), p.6216-6235
Main Authors: Li, Tengyue, Rong, Shenghui, Zhao, Wenfeng, Chen, Long, Liu, Yongbin, Zhou, Huiyu, He, Bo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Underwater images captured by optical cameras can be degraded by light attenuation and scattering, which leads to deteriorated visual image quality. The technique of underwater image enhancement plays an important role in a wide range of subsequent applications such as image segmentation and object detection. To address this issue, we propose an underwater image enhancement framework which consists of an adaptive color restoration module and a haze-line based dehazing module. First, we employ an adaptive color restoration method to compensate the deteriorated color channels and restore the colors. The color restoration module consists of three steps: background light estimation, color recognition, and color compensation. The background light estimation determines the image is blueish or greenish, and the compensation is applied in red-green or red-blue channels. Second, the haze-line technique is employed to remove the haze and enhance the image details. Experimental results show that the proposed method can restore the color and remove the haze at the same time, and it also outperforms several state-of-the-art methods on three publicly available datasets. Moreover, experiments on an underwater object detection dataset show that the proposed underwater image enhancement method is able to improve the accuracy of the subsequent underwater object detection framework.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.449930