Loading…

Information geometry theory of bifurcations? A covariant formulation

The conventional local bifurcation theory (CBT) fails to present a complete characterization of the stability and general aspects of complex phenomena. After all, the CBT only explores the behavior of nonlinear dynamical systems in the neighborhood of their fixed points. Thus, this limitation impose...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2022-02, Vol.32 (2), p.023119-023119
Main Authors: da Silva, V. B., Vieira, J. P., Leonel, Edson D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-1c7fd8d0b61a0b7491bca91c78a480e4db80c6f7cf5d0cd185195a0954e21a483
cites cdi_FETCH-LOGICAL-c383t-1c7fd8d0b61a0b7491bca91c78a480e4db80c6f7cf5d0cd185195a0954e21a483
container_end_page 023119
container_issue 2
container_start_page 023119
container_title Chaos (Woodbury, N.Y.)
container_volume 32
creator da Silva, V. B.
Vieira, J. P.
Leonel, Edson D.
description The conventional local bifurcation theory (CBT) fails to present a complete characterization of the stability and general aspects of complex phenomena. After all, the CBT only explores the behavior of nonlinear dynamical systems in the neighborhood of their fixed points. Thus, this limitation imposes the necessity of non-trivial global techniques and lengthy numerical solutions. In this article, we present an attempt to overcome these problems by including the Fisher information theory in the study of bifurcations. Here, we investigate a Riemannian metrical structure of local and global bifurcations described in the context of dynamical systems. The introduced metric is based on the concept of information distance. We examine five contrasting models in detail: saddle-node, transcritical, supercritical pitchfork, subcritical pitchfork, and homoclinic bifurcations. We found that the metric imposes a curvature scalar R on the parameter space. Also, we discovered that R diverges to infinity while approaching bifurcation points. We demonstrate that the local stability conditions are recovered from the interpretations of the curvature R, while global stability is inferred from the character of the Fisher metric. The results are a clear improvement over those of the conventional theory.
doi_str_mv 10.1063/5.0069033
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2635239038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635239038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-1c7fd8d0b61a0b7491bca91c78a480e4db80c6f7cf5d0cd185195a0954e21a483</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgitPpwX9ACl5U6HxJmi49yZi_BgMveg5pmmhH28ykHey_N92mgqCnF_I-ebx8ETrDMMKQ0hs2AkgzoHQPHWHgWTxOOdnvzyyJMQMYoGPvFwCACWWHaEAZoQQSfoTuZo2xrpZtaZvoTdtat24dte_ahmJNlJemc2rT9rfRJFJ2JV0pmzbqn3XVpnOCDoysvD7d1SF6fbh_mT7F8-fH2XQyjxXltI2xGpuCF5CnWEI-TjKcK5mFWy4TDjopcg4qNWNlWAGqwJzhjEnIWKIJDoQO0eV27tLZj077VtSlV7qqZKNt5wVJ-4-FIHp68YsubOeasF1QJMMJwTgJ6mqrlLPeO23E0pW1dGuBQfTRCiZ20QZ7vpvY5bUuvuVXlgFcb4FXZbvJ5d9pf-KVdT9QLAtDPwFXfY5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629142114</pqid></control><display><type>article</type><title>Information geometry theory of bifurcations? A covariant formulation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>da Silva, V. B. ; Vieira, J. P. ; Leonel, Edson D.</creator><creatorcontrib>da Silva, V. B. ; Vieira, J. P. ; Leonel, Edson D.</creatorcontrib><description>The conventional local bifurcation theory (CBT) fails to present a complete characterization of the stability and general aspects of complex phenomena. After all, the CBT only explores the behavior of nonlinear dynamical systems in the neighborhood of their fixed points. Thus, this limitation imposes the necessity of non-trivial global techniques and lengthy numerical solutions. In this article, we present an attempt to overcome these problems by including the Fisher information theory in the study of bifurcations. Here, we investigate a Riemannian metrical structure of local and global bifurcations described in the context of dynamical systems. The introduced metric is based on the concept of information distance. We examine five contrasting models in detail: saddle-node, transcritical, supercritical pitchfork, subcritical pitchfork, and homoclinic bifurcations. We found that the metric imposes a curvature scalar R on the parameter space. Also, we discovered that R diverges to infinity while approaching bifurcation points. We demonstrate that the local stability conditions are recovered from the interpretations of the curvature R, while global stability is inferred from the character of the Fisher metric. The results are a clear improvement over those of the conventional theory.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0069033</identifier><identifier>PMID: 35232048</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bifurcation theory ; Chaos theory ; Curvature ; Dynamical systems ; Fisher information ; Information theory ; Nonlinear systems ; Stability</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-02, Vol.32 (2), p.023119-023119</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-1c7fd8d0b61a0b7491bca91c78a480e4db80c6f7cf5d0cd185195a0954e21a483</citedby><cites>FETCH-LOGICAL-c383t-1c7fd8d0b61a0b7491bca91c78a480e4db80c6f7cf5d0cd185195a0954e21a483</cites><orcidid>0000-0001-6062-2096 ; 0000-0001-8224-3329 ; 0000-0002-3843-5232 ; 0000000238435232 ; 0000000182243329 ; 0000000160622096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35232048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>da Silva, V. B.</creatorcontrib><creatorcontrib>Vieira, J. P.</creatorcontrib><creatorcontrib>Leonel, Edson D.</creatorcontrib><title>Information geometry theory of bifurcations? A covariant formulation</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The conventional local bifurcation theory (CBT) fails to present a complete characterization of the stability and general aspects of complex phenomena. After all, the CBT only explores the behavior of nonlinear dynamical systems in the neighborhood of their fixed points. Thus, this limitation imposes the necessity of non-trivial global techniques and lengthy numerical solutions. In this article, we present an attempt to overcome these problems by including the Fisher information theory in the study of bifurcations. Here, we investigate a Riemannian metrical structure of local and global bifurcations described in the context of dynamical systems. The introduced metric is based on the concept of information distance. We examine five contrasting models in detail: saddle-node, transcritical, supercritical pitchfork, subcritical pitchfork, and homoclinic bifurcations. We found that the metric imposes a curvature scalar R on the parameter space. Also, we discovered that R diverges to infinity while approaching bifurcation points. We demonstrate that the local stability conditions are recovered from the interpretations of the curvature R, while global stability is inferred from the character of the Fisher metric. The results are a clear improvement over those of the conventional theory.</description><subject>Bifurcation theory</subject><subject>Chaos theory</subject><subject>Curvature</subject><subject>Dynamical systems</subject><subject>Fisher information</subject><subject>Information theory</subject><subject>Nonlinear systems</subject><subject>Stability</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgitPpwX9ACl5U6HxJmi49yZi_BgMveg5pmmhH28ykHey_N92mgqCnF_I-ebx8ETrDMMKQ0hs2AkgzoHQPHWHgWTxOOdnvzyyJMQMYoGPvFwCACWWHaEAZoQQSfoTuZo2xrpZtaZvoTdtat24dte_ahmJNlJemc2rT9rfRJFJ2JV0pmzbqn3XVpnOCDoysvD7d1SF6fbh_mT7F8-fH2XQyjxXltI2xGpuCF5CnWEI-TjKcK5mFWy4TDjopcg4qNWNlWAGqwJzhjEnIWKIJDoQO0eV27tLZj077VtSlV7qqZKNt5wVJ-4-FIHp68YsubOeasF1QJMMJwTgJ6mqrlLPeO23E0pW1dGuBQfTRCiZ20QZ7vpvY5bUuvuVXlgFcb4FXZbvJ5d9pf-KVdT9QLAtDPwFXfY5c</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>da Silva, V. B.</creator><creator>Vieira, J. P.</creator><creator>Leonel, Edson D.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6062-2096</orcidid><orcidid>https://orcid.org/0000-0001-8224-3329</orcidid><orcidid>https://orcid.org/0000-0002-3843-5232</orcidid><orcidid>https://orcid.org/0000000238435232</orcidid><orcidid>https://orcid.org/0000000182243329</orcidid><orcidid>https://orcid.org/0000000160622096</orcidid></search><sort><creationdate>202202</creationdate><title>Information geometry theory of bifurcations? A covariant formulation</title><author>da Silva, V. B. ; Vieira, J. P. ; Leonel, Edson D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-1c7fd8d0b61a0b7491bca91c78a480e4db80c6f7cf5d0cd185195a0954e21a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcation theory</topic><topic>Chaos theory</topic><topic>Curvature</topic><topic>Dynamical systems</topic><topic>Fisher information</topic><topic>Information theory</topic><topic>Nonlinear systems</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, V. B.</creatorcontrib><creatorcontrib>Vieira, J. P.</creatorcontrib><creatorcontrib>Leonel, Edson D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, V. B.</au><au>Vieira, J. P.</au><au>Leonel, Edson D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information geometry theory of bifurcations? A covariant formulation</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2022-02</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>023119</spage><epage>023119</epage><pages>023119-023119</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The conventional local bifurcation theory (CBT) fails to present a complete characterization of the stability and general aspects of complex phenomena. After all, the CBT only explores the behavior of nonlinear dynamical systems in the neighborhood of their fixed points. Thus, this limitation imposes the necessity of non-trivial global techniques and lengthy numerical solutions. In this article, we present an attempt to overcome these problems by including the Fisher information theory in the study of bifurcations. Here, we investigate a Riemannian metrical structure of local and global bifurcations described in the context of dynamical systems. The introduced metric is based on the concept of information distance. We examine five contrasting models in detail: saddle-node, transcritical, supercritical pitchfork, subcritical pitchfork, and homoclinic bifurcations. We found that the metric imposes a curvature scalar R on the parameter space. Also, we discovered that R diverges to infinity while approaching bifurcation points. We demonstrate that the local stability conditions are recovered from the interpretations of the curvature R, while global stability is inferred from the character of the Fisher metric. The results are a clear improvement over those of the conventional theory.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35232048</pmid><doi>10.1063/5.0069033</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6062-2096</orcidid><orcidid>https://orcid.org/0000-0001-8224-3329</orcidid><orcidid>https://orcid.org/0000-0002-3843-5232</orcidid><orcidid>https://orcid.org/0000000238435232</orcidid><orcidid>https://orcid.org/0000000182243329</orcidid><orcidid>https://orcid.org/0000000160622096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2022-02, Vol.32 (2), p.023119-023119
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_2635239038
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Bifurcation theory
Chaos theory
Curvature
Dynamical systems
Fisher information
Information theory
Nonlinear systems
Stability
title Information geometry theory of bifurcations? A covariant formulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20geometry%20theory%20of%20bifurcations?%20A%20covariant%20formulation&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=da%20Silva,%20V.%20B.&rft.date=2022-02&rft.volume=32&rft.issue=2&rft.spage=023119&rft.epage=023119&rft.pages=023119-023119&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0069033&rft_dat=%3Cproquest_scita%3E2635239038%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-1c7fd8d0b61a0b7491bca91c78a480e4db80c6f7cf5d0cd185195a0954e21a483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629142114&rft_id=info:pmid/35232048&rfr_iscdi=true