Loading…
A new view of how cytoplasmic viscosity affects microtubule dynamics
How the physical nature of the cytoplasm shapes cellular processes has been increasingly studied in recent years. Work in this issue demonstrates that cytoplasmic viscosity affects the dynamic instability of microtubules. Surprisingly, both polymerization and depolymerization slow with increasing vi...
Saved in:
Published in: | Developmental cell 2022-02, Vol.57 (4), p.419-420 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | How the physical nature of the cytoplasm shapes cellular processes has been increasingly studied in recent years. Work in this issue demonstrates that cytoplasmic viscosity affects the dynamic instability of microtubules. Surprisingly, both polymerization and depolymerization slow with increasing viscosity. This raises interesting questions for future work.
How the physical nature of the cytoplasm shapes cellular processes has been increasingly studied in recent years. Work in this issue demonstrates that cytoplasmic viscosity affects the dynamic instability of microtubules. Surprisingly, both polymerization and depolymerization slow with increasing viscosity. This raises interesting questions for future work. |
---|---|
ISSN: | 1534-5807 1878-1551 1878-1551 |
DOI: | 10.1016/j.devcel.2022.02.006 |