Loading…

Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications

Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time mole...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews 2022-03, Vol.122 (6), p.6850-6918
Main Authors: Liu, Yongchao, Teng, Lili, Yin, Baoli, Meng, Hongmin, Yin, Xia, Huan, Shuangyan, Song, Guosheng, Zhang, Xiao-Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.1c00875