Loading…

Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation

A convenient interfacial engineering strategy is developed to the construction of worm-shaped palladium nanocrystals strongly coupled with polyelectrolyte-modified Ti3C2Tx MXene via direct electrostatic attraction, which express exceptional electrocatalytic ability toward methanol oxidation. [Displa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2022-06, Vol.616, p.781-790
Main Authors: Xiao, Di, Jiang, Quanguo, Xu, Chenyu, Yang, Cuizhen, Yang, Lu, He, Haiyan, Huang, Huajie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-e9b2ba22c6ba1f9eba18b229ebdaf28834f662b55cf7c3559de3f5fa02ad7ef3
cites cdi_FETCH-LOGICAL-c422t-e9b2ba22c6ba1f9eba18b229ebdaf28834f662b55cf7c3559de3f5fa02ad7ef3
container_end_page 790
container_issue
container_start_page 781
container_title Journal of colloid and interface science
container_volume 616
creator Xiao, Di
Jiang, Quanguo
Xu, Chenyu
Yang, Cuizhen
Yang, Lu
He, Haiyan
Huang, Huajie
description A convenient interfacial engineering strategy is developed to the construction of worm-shaped palladium nanocrystals strongly coupled with polyelectrolyte-modified Ti3C2Tx MXene via direct electrostatic attraction, which express exceptional electrocatalytic ability toward methanol oxidation. [Display omitted] •An interfacial engineering strategy is developed to construct Pd nanoworm/MXene catalyst.•The incorporation of PDDA ensures strong electrostatic attraction between Pd and MXene.•The resultant catalyst expresses superior catalytic performance for methanol oxidation.•DFT calculation discloses the enhanced antitoxic ability of Pd nanoworm/MXene toward CO. The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g−1, a high mass activity of 1526.5 mA mg−1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.
doi_str_mv 10.1016/j.jcis.2022.02.111
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2636142195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979722003423</els_id><sourcerecordid>2636142195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-e9b2ba22c6ba1f9eba18b229ebdaf28834f662b55cf7c3559de3f5fa02ad7ef3</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtVARXQo_wAH52EuCPVknG6mXqipQqYhLD9wsxx5vvErsYHtb9lv4Wbxsy5HLzEjz3hvNe4R84KzmjLefdvVOu1QDA6gZ1JzzV2TFWS-qjrPmjKwYA171Xd-dk7cp7RjjXIj-DTlvBKy7DRcr8vvOZ4xWaacmin7rPGJ0fkuDpU8hzlUa1YKGLmqalHH7mXrlg46HlNWUqPJ6DLHsg6dLmA44oc6xDBmrORhnXdl9-4Ee__LSiJgTtSHS0W3H6UDRWqcd-kxnzGOBTDT8ckZlF_w78tqWI_j-uV-Qh8-3Dzdfq_vvX-5uru8rvQbIFfYDDApAt4PitsdSNwNAGYyysNk0a9u2MAihbaebYoDBxgqrGCjToW0uyOVJdonh5x5TlrNLGsu_HsM-SWiblq-B96JA4QTVMaQU0colulnFg-RMHjORO3nMRB4zkQxkyaSQPj7r74cZzT_KSwgFcHUCYHny0WGU6WiJRuNisVOa4P6n_wd6tKOO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636142195</pqid></control><display><type>article</type><title>Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xiao, Di ; Jiang, Quanguo ; Xu, Chenyu ; Yang, Cuizhen ; Yang, Lu ; He, Haiyan ; Huang, Huajie</creator><creatorcontrib>Xiao, Di ; Jiang, Quanguo ; Xu, Chenyu ; Yang, Cuizhen ; Yang, Lu ; He, Haiyan ; Huang, Huajie</creatorcontrib><description>A convenient interfacial engineering strategy is developed to the construction of worm-shaped palladium nanocrystals strongly coupled with polyelectrolyte-modified Ti3C2Tx MXene via direct electrostatic attraction, which express exceptional electrocatalytic ability toward methanol oxidation. [Display omitted] •An interfacial engineering strategy is developed to construct Pd nanoworm/MXene catalyst.•The incorporation of PDDA ensures strong electrostatic attraction between Pd and MXene.•The resultant catalyst expresses superior catalytic performance for methanol oxidation.•DFT calculation discloses the enhanced antitoxic ability of Pd nanoworm/MXene toward CO. The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g−1, a high mass activity of 1526.5 mA mg−1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.02.111</identifier><identifier>PMID: 35247815</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electrocatalysts ; Fuel cells ; MXene nanosheets ; Pd nanoworms ; Polyelectrolyte</subject><ispartof>Journal of colloid and interface science, 2022-06, Vol.616, p.781-790</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-e9b2ba22c6ba1f9eba18b229ebdaf28834f662b55cf7c3559de3f5fa02ad7ef3</citedby><cites>FETCH-LOGICAL-c422t-e9b2ba22c6ba1f9eba18b229ebdaf28834f662b55cf7c3559de3f5fa02ad7ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35247815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Jiang, Quanguo</creatorcontrib><creatorcontrib>Xu, Chenyu</creatorcontrib><creatorcontrib>Yang, Cuizhen</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>He, Haiyan</creatorcontrib><creatorcontrib>Huang, Huajie</creatorcontrib><title>Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>A convenient interfacial engineering strategy is developed to the construction of worm-shaped palladium nanocrystals strongly coupled with polyelectrolyte-modified Ti3C2Tx MXene via direct electrostatic attraction, which express exceptional electrocatalytic ability toward methanol oxidation. [Display omitted] •An interfacial engineering strategy is developed to construct Pd nanoworm/MXene catalyst.•The incorporation of PDDA ensures strong electrostatic attraction between Pd and MXene.•The resultant catalyst expresses superior catalytic performance for methanol oxidation.•DFT calculation discloses the enhanced antitoxic ability of Pd nanoworm/MXene toward CO. The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g−1, a high mass activity of 1526.5 mA mg−1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.</description><subject>Electrocatalysts</subject><subject>Fuel cells</subject><subject>MXene nanosheets</subject><subject>Pd nanoworms</subject><subject>Polyelectrolyte</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAQtVARXQo_wAH52EuCPVknG6mXqipQqYhLD9wsxx5vvErsYHtb9lv4Wbxsy5HLzEjz3hvNe4R84KzmjLefdvVOu1QDA6gZ1JzzV2TFWS-qjrPmjKwYA171Xd-dk7cp7RjjXIj-DTlvBKy7DRcr8vvOZ4xWaacmin7rPGJ0fkuDpU8hzlUa1YKGLmqalHH7mXrlg46HlNWUqPJ6DLHsg6dLmA44oc6xDBmrORhnXdl9-4Ee__LSiJgTtSHS0W3H6UDRWqcd-kxnzGOBTDT8ckZlF_w78tqWI_j-uV-Qh8-3Dzdfq_vvX-5uru8rvQbIFfYDDApAt4PitsdSNwNAGYyysNk0a9u2MAihbaebYoDBxgqrGCjToW0uyOVJdonh5x5TlrNLGsu_HsM-SWiblq-B96JA4QTVMaQU0colulnFg-RMHjORO3nMRB4zkQxkyaSQPj7r74cZzT_KSwgFcHUCYHny0WGU6WiJRuNisVOa4P6n_wd6tKOO</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Xiao, Di</creator><creator>Jiang, Quanguo</creator><creator>Xu, Chenyu</creator><creator>Yang, Cuizhen</creator><creator>Yang, Lu</creator><creator>He, Haiyan</creator><creator>Huang, Huajie</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220615</creationdate><title>Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation</title><author>Xiao, Di ; Jiang, Quanguo ; Xu, Chenyu ; Yang, Cuizhen ; Yang, Lu ; He, Haiyan ; Huang, Huajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-e9b2ba22c6ba1f9eba18b229ebdaf28834f662b55cf7c3559de3f5fa02ad7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electrocatalysts</topic><topic>Fuel cells</topic><topic>MXene nanosheets</topic><topic>Pd nanoworms</topic><topic>Polyelectrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Jiang, Quanguo</creatorcontrib><creatorcontrib>Xu, Chenyu</creatorcontrib><creatorcontrib>Yang, Cuizhen</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>He, Haiyan</creatorcontrib><creatorcontrib>Huang, Huajie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Di</au><au>Jiang, Quanguo</au><au>Xu, Chenyu</au><au>Yang, Cuizhen</au><au>Yang, Lu</au><au>He, Haiyan</au><au>Huang, Huajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-06-15</date><risdate>2022</risdate><volume>616</volume><spage>781</spage><epage>790</epage><pages>781-790</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>A convenient interfacial engineering strategy is developed to the construction of worm-shaped palladium nanocrystals strongly coupled with polyelectrolyte-modified Ti3C2Tx MXene via direct electrostatic attraction, which express exceptional electrocatalytic ability toward methanol oxidation. [Display omitted] •An interfacial engineering strategy is developed to construct Pd nanoworm/MXene catalyst.•The incorporation of PDDA ensures strong electrostatic attraction between Pd and MXene.•The resultant catalyst expresses superior catalytic performance for methanol oxidation.•DFT calculation discloses the enhanced antitoxic ability of Pd nanoworm/MXene toward CO. The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g−1, a high mass activity of 1526.5 mA mg−1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35247815</pmid><doi>10.1016/j.jcis.2022.02.111</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-06, Vol.616, p.781-790
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2636142195
source ScienceDirect Freedom Collection 2022-2024
subjects Electrocatalysts
Fuel cells
MXene nanosheets
Pd nanoworms
Polyelectrolyte
title Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20engineering%20of%20worm-shaped%20palladium%20nanocrystals%20anchored%20on%20polyelectrolyte-modified%20MXene%20nanosheets%20for%20highly%20efficient%20methanol%20oxidation&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xiao,%20Di&rft.date=2022-06-15&rft.volume=616&rft.spage=781&rft.epage=790&rft.pages=781-790&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.02.111&rft_dat=%3Cproquest_cross%3E2636142195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-e9b2ba22c6ba1f9eba18b229ebdaf28834f662b55cf7c3559de3f5fa02ad7ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636142195&rft_id=info:pmid/35247815&rfr_iscdi=true